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Abstract

A new variant of the ARCH class of models for forecasting the conditional vari-
ance, to be called the Generalized AutoRegressive Conditional Heteroskedasticity
Parkinson Range (GARCH-PARK-R) model, is proposed. The GARCH-PARK-R model,
utilizing the extreme values, is a good alternative to the “realized volatility” model
which requires a large amount of intra-daily data that remain relatively costly and are
not readily available. The estimates of the GARCH-PARK-R model are derived using the
Quasi-Maximum Likelihood Estimation (QMLE). The results suggest that the GARCH-
PARK-R model is a good middle ground between intra-daily models, such as the real-
ized volatility, and inter-daily models, such as the ARCH class. The forecasting per-
formance of the models is evaluated using the daily Philippine Peso-U.S. Dollar ex-
change rate from January 1997 to December 2003.

JEL classification: C53
Keywords: Volatility, GARCH-PARK-R, QMLE

1. Introduction

Since the introduction of the seminal paper on AutoRegressive Conditional
Heteroskedasticity (ARCH) process of Robert Engle in 1982, researches on financial
econometrics have been dominated by extensions of the ARCH process. One
particular difficulty experienced in evaluating the various ARCH-type of models is
the fact that volatility is not directly measurable — the conditional variance is
unobservable. The absence of such a benchmark that we can use to compare
forecasts of the various models makes it difficult to identify good models from bad
ones.

Anderson and Bollerslev [1998] introduced the concept of “realized volatility”
from which evaluation of ARCH volatility models is to be made. Realized volatility
models are calculated from high-frequency intra-daily data, rather than inter-daily
data. In their seminal paper, Anderson and Bollerslev collected information on the
DM-Dollar and Yen-Dollar spot exchange rates for every five-minute interval,
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resulting in a total of 288 5-minute observations per day! The 288 observations
were then used to compute for the variance of the exchange rate of a particular day.
Although volatility is an instantaneous phenomenon, the concept of realized
volatility is by far the closest we have to a “model-free” measure of volatility.

Obviously, there is a trade-off when one uses realized volatility in estimating
the conditional variance. While it may provide a model-free estimate of the unknown
conditional variance, the data requirement (getting an observation every 5 minutes,
for instance) is simply enormous. In the case of the Philippines, the Philippine
Stock Exchange (PSE) starts trading at 9:30 a.m. and closes at 12:00 noon, for a
total of 150 minutes of trading time or 30 5-minute observations. Given the low
market activity, it is highly probable that the price of a particular stock will not
move during that 5-minute period. The same problem might be encountered in the
foreign exchange market in the Philippine Dealing System (PDS). Thus, data
problems may hinder the use of realized volatility for emerging markets such as
the Philippines.

An alternative approach to model volatility using intra-daily data is through
the use of the range, i.e., the difference between the highest and lowest values for
the day. The range is the popular measure of volatility (the standard deviation) in
the area of quality control. The range is convenient to use, especially for researchers
who do not have access to information on the trading floors of various markets,
since major newspapers normally report the highest and lowest values of assets
(stock prices, currencies, interest rates, etc.), together with the opening and closing
prices.

This paper proposes the use of the range, specifically the Parkinson Range, in
estimating the conditional variance. The model will be called the Generalized
AutoRegressive Conditional Heteroskedasticity Parkinson Range (GARCH-PARK-
R) model. This paper is organized as follows: Section 1 serves as the introduction.
Section 2 discusses the ARCH process and its extensions. Section 3 introduces the
concept of realized volatility. The GARCH-PARK-R model and the estimation
procedure are discussed in Section 4. Section 5 provides the empirical results and
Section 6 concludes. '

2. The ARCH process and its extensions

In this section, the ARCH process and some of its important properties will be
discussed to help readers fully appreciate the survey of the literature and better
understand why the ARCH process has been very attractive in modeling financial
time-series.

Let {u, (8),t€ (...,—1,0,1,‘.‘)} denote a discrete time stochastic process with
the conditional mean and variance functions being parameterized by the finite
dimensional vector @ € ® — R™and let 6 denote the true value of the parameter.
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Let E[(+)| 7,_,] or E,_, (#) denote-the mathematical expectation conditioned on
the information available at time (¢ -1),7,_,.

Definition 1. In the relationship, %, = z,0,,the stochastic process
{u,(0),t € (—0,)} follows an ARCH process if:

a. E(u (6:)1,.))=0, for1=1,2,..

b. Var (u,(6:)|1,_,) = o7 (6-) depends non- tnv:ally on the sigma field
generated by the past observations, {7 (6:),u 5 (6:),...}.

c:r,2 (6:)= o*f is the conditional variance of the process, conditioned on the
information set /,_,. The conditional variance is central to the ARCH process.

Letting Z,(6) =u, (6-)/0,(6:),t =1,2,... we have the standardized process
{Z,(6-),t € (—0,0)} and it follows that:

0 EZ@)N] =0
(i) Var([Z,(&)|1,4] =1 Vi
Thus, the conditional variance of Z,(e) is time-invariant. Moreover, if we

assume that the conditional distribution of Z,(e) is time-invariant with a finite
fourth moment, it follows from Jensen’s inequality that

E(uf)=E(Zf)E(af)2E(Zf)[E(af )T =E(Zf)[£‘(u,z)]2
with the last equality holding only when the conditional variance is constant.

Assuming that Z,(e) is normally distributed, it follows that the unconditional
distribution of u, is leptokurtic.

Engle [1982] has shown that for the first-order or ARCH (1) process,
o} =ay+aqul, (1)

the unconditional variance and the fourth moment for this process are, respectively,
given by

1-¢

30l 1-a?
E(u®) = 0 |
@) Ll—al)z}{l—saf}

The cond1t10n for the variance to be finite is that &; <1 and for the fourth
moment, 3a1 <1.
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2
It implies that E(uf )/E [(u,z )] 2 E(Zf). Thus, for the first-order ARCH
process,

E(u,“)2 =3(1—a12)>3
(ee)) (=2e0)

This result implies that the ARCH (1) process is a heavy-tailed distribution, that
is, the process generates data with fatter tails than the normal distribution. This
particular characteristic of the ARCH process is relevant in modeling financial time-
series, like stock returns and asset prices, since these series tend to have thick-
tailed distributions.

In general, the ARCH (g) process can be defined as

Of =0+l +onul g ++ aur,. (2

For this model to be well defined and have positive conditional variance almost
surely, the parameters must satisfy @ > 0and @;,...,@, 2 0. Following the natural
extension of the autoregressive moving-average (ARMA) process as a parsimonious
representation of a higher-order AR process, Bollerslev [1986] extended the work
of Engle to the Generalized ARCH or GARCH process. In the GARCH (p,g) process
defined as

2 2 2
o =w-+ iﬁjo}—-_f +iaiut—f 3)
j=I

i=l
®0>0,,20,8;20,i=1...,g j=L...,p

the conditional variance is a linear function of g lags of the squares of the error
terms (uf‘) or the ARCH terms (also referred to as the “news” from the past), and p
lags of the past values of the conditional variances (0',2) or the GARCH terms, and a
constant @. The inequality restrictions are imposed to guarantee a positive
conditional variance.

2.1 The exponential GARCH (EGARCH) process

The GARCH process, being an infinite or a higher-order representation of the
ARCH process, captures the empirical regularities observed in financial time-series
data such as thick-tailed distributions and volatility clustering. However, the GARCH
process fails to explain the so-called “leverage effects” often observed in financial
time-series. The concept of leverage effects, first observed by Black [1976], refers
to the tendency for changes in the stock prices to be negatively correlated with
changes in stock volatility. In other words, the effect of a shock on volatility is
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asymmetric, or to put it differently, the impact of a “good news” (positive lagged
residual) is different from the impact of the “bad news” (negative lagged residual).

The GARCH process, being symmetric, fails to capture this phenomenon since
in the model, the conditional variance is a function only of the magnitudes of the
lagged residuals and not of their signs.

A model that accounts for an asymmetric response to a shock was credited
to Nelson [1991] and is called an Exponential GARCH or EGARCH model. The
specification for the conditional variance using the EGARCH (p,q,7) is

log(cr_, w+iﬁjlog 0', J) i +Zy Yook @)

C"rﬁk
The log of the condmonal variance implies that the leverage effect is exponential
rather than quadratic.

01

A commonly used model is the EGARCH (1,1,1) given by

"L+ filog o) + 7 L ®)

log(o-f) a, +a]
Ot-1

O'rl

The presence of the leverage effects is accounted for by ¥, which makes the
model asymmetric. The motivation behind having an asymmetric model for volatility
is that it.allows the volatility to respond more quickly to falls in the prices (bad
news) rather than to the corresponding increases (good news).

2.2 The threshold GARCH (TARCH) process

Another model that accounts for the asymmetric effect of the “news” is the
Threshold GARCH or TARCH model due independently to Zakoian [1994] and
Glosten, Jaganathan and Runkle [1993]. The TARCH (p,q) specification is given by

p q r

2 ;) 2 s R
o) = G)"‘Zﬁjﬂ}_} +Za;u:—s itz Z?’k“f—kft—k ©

J':] i=1 k=1

where,

- lif u, <0
fik = s

0 otherwise

In the TARCH model, “good news”, 4,_; >0 and “bad news”, u,_; <0 have
different effects on the conditional variance. When y; # 0,we conclude that news
impact is asymmetric and there is a leverage effect. When y, =0 for all k, the
TARCH model is equivalent to the GARCH model. The difference between the TARCH
and the EGARCH models is that in the former, the leverage effect is quadratic while
in the latter, the leverage effect is exponential.
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2.3 The power ARCH (PARCH) process

Most of the ARCH-type of models discussed so far deal with the conditional
variance in the specification. However, when one talks of volatility the appropriate
measure is the standard deviation rather than the variance, as noted by Barndorff-
Nielsen and Shephard [2002]. A GARCH model using the standard deviation was
introduced independently by Taylor [1986] and Schwert [1989]. In these models,
the conditional standard deviation is used as a measure of volatility. This class of
models is generalized by Ding et al.[1993] using the Power ARCH or PARCH model.
The PARCH specification is given by

P q
of =w+ 200+ 2 (wal i) )
where, . =l
5>0,];',-|£1for:‘:1,2,...,randyi =0fori>r,andr < p.

Note that in the PARCH model, ¥ =0 implies asymmetric effects. The PARCH
model reduces to the GARCH model when & =2 and y; = Ofor all i.

3. The realized volatility

Let F, ;denote the price of an asset at time n > 0 at day ¢, wheren=1,2,...,N
and 1=1,2,...,T. Note that when n =1, F, is simply the inter-daily price of the
asset (normally recorded as the closing price). Let p, , =log (P, ;) denote the natural
logarithm of the price. The observed discrete time-series of continuously
compounded returns with NV observations per day is given by

Tng = Ppt =By ®)

When n =1, we simply ignore the subscript n and 7, = p, — p,_; =log (B) -
log (B_;) where ¢ =2,...,T. In this case, 7, is the time-series of daily return and is
also the covariance-stationary series.

In (8), we assume that:
(@) E(r,)=0
(®) E(ry,rys)=0forn#mandt+s

(c) E(rn’tz b2 ) <o for n,m,s,t

Assumption (a) implies that the mean return is zero. This is from the fact that
the log prices, p,, follow an i.i.d. random walk process,

Py = Dyiir F 6y where g, ,|1,_; ~ i.i.d.(O,o;z). ©)]
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Following (9), r, Tt = Pnt = Pp-1y = &y, and thus, E(r, ) = E(g,,) =0.

Assumption (b) follows from the fact that &, , are i.i.d. and from (a) which
gives us E(r,,, Tms) =E(Eyys Ems)=0. Assumption (c) states that the variances
.and co-variances of the squared returns exist and are finite. This follows from
E(ro,ar, a)= E(zr:,,‘,2 sm,sz) < for n,m,s,t.

From (8), the continuously compounded daily return (Campbell, Lo, and
Mackinlay [1997:11]) is given by

N
1 =Zr,,l, (10)
n=l1

and the continuously compounded daily squared returns is

N 2
n =[Z’n.f} »Zr ;+ZZ Pt t
n=1 n=l m=1
=Z"u2.:+22 Z Tt Tm=n g (11)

n=1 n=1 m=n+l1

Note that 0',2 =Var(n)=E (r;z) since E(r;) =0. From (11) and using assumption
(b) of (8) above, we have,

ol =E(?) =E(s?) (12)

N
where s,z = Z rﬂzf
n=l

Thus, the sum of the intra-daily squared returns is an unbiased estimator of the
daily population variance. The sum of the intra-daily squared returns is known as
the realized volatility (also called the realized variance by Barndorff-Nielsen and
Shephard [2002]). Given enough observations for a given trading day, the realized:
volatility can be computed and is a model-free estimate of the conditional variance.
The properties of the realized volatility are discussed in Anderson, Bollerslev,
Diebold and Labys [1999]. In particular, the authors found that the realized volatility

is a consistent estimator of the daily population variance, 0',2.

4. The GARCH-PARK-R model

While the concept of realized volatility does provide us with a highly efficient
way of estimating the unknown conditional variance, the problem of generating
information on the price of an asset every five minutes or so is simply enormous.
An alternative measure is to use extreme values i.e., the highest and lowest prices
of an asset, to produce two intra-daily observations. The range—the difference
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between the highest and lowest log prices—is a good proxy for volatility. The
range has the advantage of being available for researchers since high and low
prices are available daily for a variety of financial time-series such as the prices of
individual stock, composite indices, Treasury bill rates, lending rates, currency
prices and the like.

The log range, R,,is defined as
R, =log(Ryy,)—log(Fyy,)
=Py~ Py t=12....T (13)

where F v, is the highest price of the asset at day (or time) tand Fj), is the lowest
price of the asset at day ¢.

The log range is superior to the usual measure of volatility based on daily data,
the squared return r,z =log(F) —log(F,._,). Alizadeh, Brandt and Diebold [2001]
noted that the log range is a better measure of volatility in the sense that the log
range has fewer measurement errors compared to the squared-returns. For instance,
on a given day, the price of an asset fluctuates substantially throughout the day but
its closing price happens to be very close to the previous closing price. If we use
the inter-daily squared return, the value will be small despite the large intra-daily
price fluctuations. The log range, using the highest and lowest values, reflects
more precise price fluctuations and can indicate that the volatility for the day is
high. Moreover, the log range can be approximated by a Gaussian distribution
quite well. The distribution of the range was first derived by Feller [1951] using a
drift-less Brownian motion process.

Compared to the realized volatility, the log range has the advantage of being
robust to certain market microstructure effects. These microstructure effects are
noises that can affect the features of the time-series. The bid-ask spread is a common
type of microstructure effect. Most markets require liquidity, giving way to a practice
of granting monopoly rights to the so-called “market makers”. Such monopoly
rights, granted by the exchange, allow the market makers to post different prices
for buying and selling; they buy at a bid price B, and sell at a higher price P,. The
difference in the prices, P, — F,, is known as the spread. Although in practice, such
spread is rather small, its presence increases the volatility of the intra-daily squared
returns, the input in the realized volatility, making the estimates biased upward.
The log range, on the other hand, is not seriously affected by the bid-ask spread.
There are other factors that create unnecessary noise in the-intra-daily realized
volatility such as regulatory rules imposed on the market. One such rule is the
lifting of trading restrictions in the foreign exchange market for Japanese banks
during the Tokyo lunch period resulting to higher volatility as documented by
Anderson, Bollerslev and Das [1998].

Parkinson [1980] was the first to make use of the range in measuring volatility
in the financial market. Parkinson developed the PARK daily volatility estimator
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based on the assumption that the intra-daily prices follow a Brownian motion. This
study will make use of the PARK Range in modeling time-varying volatility. The
model will be called the Generalized Auto-Regressive Conditional
Heteroskedasticity Parkinson Range (GARCH-PARK-R) model.

Consider the covariance-stationary time-series {R,, }where,
_ log(B,) —log(Ry,.)
J4log(2)

Rp, is the PARK-Range of the asset at time ¢. Moreover, let Rp, > 0 for all ¢ and that
P(Rp, <d|RP,_1,RPt_2,...) >0 for any d >0 and for all ¢. This condition states
that the probability of observing zeros or near zeros in Rp,is greater than zero.

Let m, = E[Rp, | 1,.;] be the conditional mean of the PARK range and
0'3‘ =Var{Rp, | 1,_,] bethe conditional variance of the PARK range.

The motivation behind the GARCH-PARK-R model is the Auto-Regressive
Conditional Duration (ACD) model of Engle and Russel [1998] used to model
observations that arrive at irregular intervals. Let

Rp, t=12,...,T. (14)

Rp = ¢, where &|7,_, ~iid (1,47 and

j:l _f=]
The model in (15) is known as the GARCH-PARK-R process of orders p and q.
The mean and variance of the PARK range are given by

@ E(Rp) =a
© V() 5(3)-[ (o )]
= wE(ef)- st
=t (6 +1)- 4} = 4. (16)

The GARCH-PARK-R model is similar to the Conditional Auto-Regressive Range
(CARR) model suggested by Chou [2003]. Two differences between this study and
that of Chou’s are to be clarified. First, this study uses the Parkinson range to study
volatility instead of the usual log range (Chou’s statistic). The Parkinson range has
been found to be a better estimator of volatility (standard deviation). The second
difference is the use of the data. This study makes use of the daily data while
Chou’s paper used weekly data. Since weekly data may have distorted estimates
due to the presence of an aggregation effect, this paper used the daily data instead.
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For the density function of ¢, in (15), this study follows the suggestion of
Engle and Russel [1998] and Engle and Gallo [2003] of using the gamma density

S (&ilda)= (zg)) & exp{—%}- (17)

Since E(g,)=1=0af (by assumption in (15)), it implies that & =1/4. Thus
(17) now becomes

& % exp{-asg,}

I o L a? & i exps —a ff’—
“T@ () T
=La°" (R )a_l( )_a exps —a ﬁ
T VRl W SR,
= M(Ra )‘H exp{—R;: [EJ} (18)
My

f(grlfr—l) =%

= f(Rp|1m1) =f[Rf

[(a)

From (18), the conditional mean and variances of Rp are

E(R}’,|f:fl) =ﬁ =H
Var(Rp|1, -2 ()
ar( P._| :—1) _(a/pl)z = ” .

The density function in (18) approaches the Gaussian density as a increases.
Moreover, the likelihood function is given by

4 1 & a-1 - R,
L=rr=xl[%a (Re)" (u) cxp{—a{fJH. (19)

If the parameters of interest are only those that define 4, in (15), denoted by
44, (0), then the log likelihood can be simplified into

T T Rp
logL=y-a) log(y)-a) log| —-
t=1 H

=1 1

=y- ai[]og (,u, (Q)) + %P:g)] (20)

t=1

—

Taking the derivative of the log likelihood function with respect to 8, we have
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dlog(L) =_a£ 1 om©® _Rp ou©|_
o8 Slw© 08 4o 4©

U

M~

-
Il
—

Ry 1 Jom@® _
RGO

U

5| % _”'@]a'“f@ -0, @
w7 ) I R ()

-

The parameter vector 8 in (21) can be estimated numerically using some
iterative algorithms.

An easier way of estimating the parameter vector @ is to apply the method of
estimating the parameters of a GARCH (p,¢) process. Recall that in the GARCH (p,q)
process discussed in section 2,

M =0,Z, Z, ~N(0,1)
and

2 _ 2 2
o, =0+ fﬁjo}_l +iai,u,_i.
Jj=1

i=l

For the GARCH-PARK-R process let
JRe =1, v, ~iid(0,1)
(JEJI, ,) 4 E(v,)=0
and Var(‘/R_R|I,_1)=pr(v,2)=y,

with 4, =w+ Za RP + fﬁiy,__’ given in (15).
J=1
Thus, an analogous method of est:lmatmg the parameter vector @ is to estimate
the variance equation for the positive square root of the PARK R using GARCH (p,q)
specification with zero in the mean specification. The Quasi-Maximum Likelihood
estimators are consistent and distributed as Gaussian asymptotically even if the
probability density function of the error is misspecified following the results of
Lee and Hansen and Lumsdaine for the GARCH (/,]) and Berkes et al. for the
GARCH (p,q) process. Obviously, if the correct specification is satisfied, for instance
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using the gamma distribution, the QMLE is the MLE and the estimators are
asymptotically efficient. Therefore, a trade-off has to be made. This study makes
use of the QMLE and aspires for consistency and asymptotic normality of the
estimators. The data and the results of the empirical analysis are discussed in the
next section.

5. Empirical results

This section discusses the results of forecasting the conditional variance using
the different ARCH and GARCH-PARK-R models. In this study, a total of 77 models
were estimated: 68 ARCH-type models and 9 GARCH-PARK-R models. The model
specifications are provided in Tables 1A and 1B below.

Table 1A. Specification for ARCH-type models *

Model Specification Model Specification
1 ARCH (1) 10 TARCH (1,1)
2 GARCH (1,1) 11 TARCH (1,2)
3 GARCH (1,2) 12 TARCH (2,1)
4 GARCH (2,1) 3 13 TARCH (2,2)
5 GARCH (2,2) 14 PARCH (1,1)
6 EGARCH (1,1) 15 PARCH (1,2)
7 EGARCH (1,2) 16 PARCH (2,1)
8 EGARCH (2,1) 17 PARCH (2,2)
9 EGARCH (2,2)

* The 17 models are estimated via the MLE using the Gaussian, Student’s ¢ and
the Generalized Error Distribution and using the QMLE resulting in 68 models.

Table 1B. Specification for GARCH PARK R models*

Model Specification Model Specification
1 ARCH (1) 6 EGARCH (1,1)
2 GARCH (1,1) 7 EGARCH (1,2)
3 GARCH (1,2) 8 EGARCH (2,1)
4 GARCH (2,1) 9 EGARCH (2,2)
5 GARCH (2,2)

* The models are estimated using QMLE.
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These models were estimated to fit the daily returns of the peso-dollar exchange
rate from January 02, 1997 to December 05, 2003, for a total of 1730 observations.

Following the approach of Hansen and Lunde [2001], the time-series was
divided into two sets: an estimation period and an evaluation period,

t=-T+1,...,0 LiZeiste,
—_— e —
estimation evaluation
period period

The parameters of the volatility models were estimated using the first T inter-
daily observations and the estimates of the parameters were used to make forecasts
for the remaining » periods. The estimation period made use of daily returns from
January 02, 1997 to December 27, 2002, for a total of 1493 observations.

In the evaluation period the daily volatility was estimated using the square of
the Parkinson R, defined in (14). The square of the PARK R served as the proxy for
the unknown conditional variance. The evaluation period made use of daily returns
from January 02, 2003 to December 05, 2003, for a total of 237 observations.

3.1 Loss functions

Let & denote the number of competing forecasting models. The j™ model
provides a sequence of forecasts for the conditional variance

52 52 ~2 ;
01592550 ]=1,2,-..,h

that will be compared to the square of the Parkinson range, the proxy of the intra-
daily calculated volatility,

2 2
Rp,...Rp.
The forecast of /" model leads to the observed loss,

Lj,,(&i,,Rf,;) =127 and $=1.2....237

In this study, five (5) different loss functions are used to evaluate the forecasting
performance of the different models. The loss functions are:

>|Rs - 6|
MAD =1L — (22
n
n
>|RE -7
MAD, ==—, 23)
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MSE =4 (24)

ME,=t ad (25)
n
n 2
Z]:log(R% /&,2 )]
R’LOG = - : (26)

Criteria (22) to (25) are the usual mean absolute deviations and mean square
errors using the forecasts of the conditional standard deviation and the conditional
variance, respectively. Criterion (26) is equivalent to the R? criterion using the
regression equation

1og(R§)=a+blog(&f)+g, t=12,...,237

discussed in Engle and Patton [2001] and Taylor [1999].

The results of the forecasting performance of the 10 “best” models are shown
in Table 2 below. The best overall ARCH model is the TARCH (2,2) model with the
Student’s ¢ as the underlying distribution. The second “best” model is the PARCH
(2,2) model, also using the Student’s ¢ distribution.

From Table 2, it is interesting to note that models using the Generalized Error
Distribution performed relatively well using the five forecasting criteria, with 8
out of 17 models landing in the top 10 models. In general, the models with relatively
superior forecasting performance, using the peso-dollar exchange rate, are those
that accommodate the leverage effects and these are the TARCH, PARCH and EGARCH
models. However, while the correct specification of the volatility is important, one
must also consider the distribution used in estimating the parameters of the model.

The results of the empirical analysis showed that volatility models that assumed
the Gaussian distribution or those that used the QMLE performed worse compared
to models that assumed the Student’s tor Generalized Error distributions. Therefore,
it is important to correctly specify the entire distribution and not only to focus on
the specification of the volatility, even if it is the object of interest. A similar
observation was made in the study of Hansen and Lunde [2001 I
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Using the five criteria discussed above, the forecasting performance of the
GARCH-PARK-R models are given in Table 3. The top three models are GARCH
(1,2), (2,1) and (1,1). It should be noted that while the GARCH (1,2) and the GARCH
(2,1) have outperformed, albeit slightly, the GARCH (1,1), the latter is preferred
since the coefficients @ and b are significantly different from zero.

Table 3.- Forecasting performance of the GARCH-PARK-R models

park R Model MADI MAD2 MSE] MSE2 R2LOG
Mean Mean Mean Mean Mean

garch (1,2) 9.26E-04 5.27B-06 142E-06 7.37E-11 1.04E+00
garch (2,1) 9.38E-04 5.37E-06 1.46E-06 7.64E-11 1.05E+00
garch (1,1) 9.43E-04 5.41E-06 148E-06 7.79E-11 1.05E+00
garch (2,2) 9.44E-04 5.42E-06 148E-06 7.82E-11 1.05E+00
egarch (1,1) 1.06E-03  6.16E-06 1.74E-06  8.66E-11 1.22E+00
egarch (2,1) 1.06E-03  6.18E-06 1.75E-06  8.78E-11 1.22E+00
egarch (1,2) 1.06E-03  6.19E-06 1.76E-06  8.88E-11 1.22E+00
arch (1) 1.18E-03  7.03E-06 2.13E-06  1.13E-10 1.34E+00
egarch (2,2) 1.25E-03  7.58E-06 2.49E-06 1.30E-10 1.48E+00

As expected, the GARCH-PARK-R models performed better than most of the
ARCH-type models. This is expected since the proxy for the conditional variance in
the evaluation period is the square of the Parkinson range. However, it is interesting
to note that the forecasting performance of the “best” ARCH-type model, the TARCH
(2,2) model with a student’s #-distribution, is relatively near the “best” GARCH-
PARK-R model. The results somewhat provide an assurance that volatility models
using inter-daily data can forecast the conditional variance rather well (at least
using the Parkinson range).

6. Conclusion

This paper introduced a relatively simple, yet efficient, model to describe the
volatility of the peso-dollar exchange rate using intra-daily returns. The Generalized
Auto-Regressive Conditional Heteroskedasticity Parkinson Range (GARCH-PARK-
R) model can actually produce volatility estimates that are relatively superior to the
ARCH class of models using inter-daily returns. The GARCH-PARK-R model is a
good alternative to the so-called Realized Volatility that makes use of a large quantity
of intra-daily data—a refinement that is difficult to obtain in emerging markets
such as the Philippines.
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