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NONNEGATIVE APPROXIMATE SOLUTIONS TO
AN ECONOMETRIC MODEL WITH PRES?IBED GOALS

By Rolando A. Danao*

1. The Goal Attainment Problem

From the reduced form of a linear econometric model, a policy-
maker might be interested in a subsystem of the form
(1) Y=Ax+b
Where:
Y : an M x 1 vector of goals
A : an M x N matrix of impact multipliers
x : an n x 1 vector of instruments
b : an m x 1 vector of constants

If a policymaker prescribes his goals, say y*, his problem is to
find an instrument vector x* that attains his goals, i.e., to find a
solution to the equation

(2) Ax = z¥*

where z* = y* — b. A solution to equation (2) exists if and only
if .

(3) AAz* = z*

where A’ is the generalized inverse of A (Graybill, 1969). If a solu-
tion exists, then

(4) x*¥=Az¥

is a solution; in general, the solution is not unique. The general solu-
tion is of the form

(5) x=A"z*¥+(1-A A
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where T is the identity matrix and v is an arbitrary vector (Gray-
bill, 1969; Jjiri, 1965). A necessary and sufficient condition for the
uniqueness of the solution is that A'A = I (Graybill, 1969). If a
solution does not exist, the goal attainment problem is that of find-
ing an “approximate solution” X so that the vector § =AxXx+b
is “as close as possible” to the prescribed goal y* (Ijiri, 1965) or
equivalently, Z = § —b isas close as possible to z* = y* —b.

“Closeness’’ between vectors may be measured by means of dis-
tance functions defined on the vector space (Sfeir-Younis, 1977).

One such distance is the ordinary Euclidean distance (or Lg-metric)
defined by

1

m 2
(6) dizl,22) =|= (zil—-z?)z

i=1

If Ax =z* hasno solution, then an approximate solution with res-
pect to the Euclidean distance is a vector % that minimizes d(z,z*)
over all vectors z = Ax,ie.,

(7) d(z, z¥) = min d(z, z*)
z=Ax

Since % minimizes the sum of the squares of the deviations be-
tween z; and z¥% it is called a least squares solution. It has been
shown that 1

(8) x= A z*

is a least squares solution to equation (2) (Graybill, 1969). Hence, a
least squares solution always exists; in general, it is not unique. The
general form of the least squares solution can be obtained by noting
that every least squares solution must satisfy Ax =2 and, there-
fore, must have the general form of equation (5):

x = Az+(I-AA)v.

AAR+(I-AA)v

AAAZ*+(I-AA)v

Az¥+ (I-AA)v.
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Hence a necessary and sufficient condition for the uniqueness of the
least squares solution is that AA = L1

The necessary and sufficient conditions for the existence and
uniqueness of solutions or of least squares solutions, however, are
silent on the nonnegativity of these solutions. A policymaker’s vec-
tor of instruments is usually nonnegative (e.g., government expendi-
tures, tax revenue). It would, therefore, be useful to determine if a
nonnegative solution or a nonnegative least squares solution exists
and if it does, to obtain such a solution. Moreover, it would also be
useful to know if the nonnegative solution obtained is unique, since
nonuniqueness implies the existence of alternative instrument poli-
cies for attaining the same goal. This paper examines these problems
via a linear programming problem similar to the artificial problem in
Phase I of the two-phase simplex method. Furthermore, when mul-
tiple nonnegative instrument vectors exist, linear programs may be
used to select the desired vector.

2. Existence and Uniqueness of Nonnegative Solutions

The problem posed in Section 1 is that of determining the feasi-
bility of the system

Ax

i

7%

2

(9)

X 0

i

and of obtaining a feasible solution if it exists. Without loss of gene-
rality, we may assume that z* 2z 0. (If 2z} < 0, multiply the
ith equation by -1).

The feasibility of system (9) can be determined by solving the
following artificial linear programming problem:

LP1: Minimize e'u

subject to Ax + Tu = z*

x,uz0

By defining 2 = A %, the system Ax =% isconsistent. Consequently, the
solution x = A" 2= AAXx=AAA z*¥ = A z* = X is unique if and only if
AA=L
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where e’ is the m—dimensional vector of 1’s and u = [uy, ug,

et um]" is a vector of artificial variables. Note that LP1 has a
feasible solution x = 0, u = z*. Since the objective function is
bounded below by zero, LP1 has an optimal solution. It has been
shown that system (9) is feasible if and only if the optimal objec-
tive function value of LP1 is zero (Simmonard, 1966). Consequently,
the optimal simplex tableau of LP1 will show if system (9) is feasible
or not, and if feasible, the same tableau gives a feasible solution.

Using LP1, we can show the uniqueness of a feasible solution to
system (9) by means of the following theorem.

THEOREM 1. Ifthesystem Ax = z¥* x = 0 hasa feasible
solution, then it is unique if and only if LP1 has a unique optimal
solution.

Proof: (=)

If =x* is the unique feasible solution to (9), then [x* , 0]
is an optimal solution of LP1 since its objective function value is
zero, which is the minimum possible value of LP1’s objective func-
tion. Hence, every optimal solution [x, u] of LP1 must satisfy u =0,
which implies that x is feasible in (9). Consequently, x = x*.

(%)

Let [x*, u*] be the unique optimal solution of LP1. Since
system (9) is feasible, then the objective function value of [x*, u*]
is zero. Hence, e’u* =0 or* u{ +ug =‘=+ vt TR 0. Since u*®
z 0, it followsthat uj=ug=..=u,=0. If x isany feasi-
ble solution to (9), then [x, 0] is an optimal solution of LP1.
Hence, [x,0]= [x*,u*] = [x*,0] and so x = x*,

Remark: It is easy to determine whether an optimal solution of
LP1 is unique or not. This is seen from the elements of the optimal
simplex tableau when the simplex algorithm is applied to LP1. The
necessary and sufficient conditions for the uniqueness of an optimal
solution can be found in Simmonard (1966).
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3. Existence and Uniqueness of Nonnegative
Least Squares Solutions

When the goals y* cannot be attained simultaneously, i.e.,
Ax = y¥*¥ —b has no solution, then we consider the set of least
squares solutions to Ax = y* —b = z*, We may also use a linear pro-
gramming problem to determine the existence and uniqueness of
nonnegative least squares solutions.

Let X be aleast squares solution to (2). Then § = Ax+b is
as close as possible to y* or equivalently, Z =A x isas close as
possible to z*. To determine the existence of nonnegative least
squares solutions, we solve the linear programming problem:

LP2: Minimize e'u

subject to Ax+ Tu=%
o =105

A problem may arise here. If X isa least squares solution distinct
from %, then the vector Z = AX is also as close to z* as z.
Another linear programming problem can be formulated thus:

Minimize e'u
subject to Ax+ Tu =%
xu 2 0.

There is, therefore, the possibility of solving more than one, possibly
an infinite number of linear programs. But this possibility is ruled
out since we can show that Z = Z . This follows from the fact
that every least squares solution to any system Ax = d satisfies the
equation Ax = AA'd (Graybill, 1969). Applying this to our prob-
lem, we must have

z=Ax = AA7z*=AX=7".

4. Selecting a Desired Instrument Vector

The existence of multiple nonnegative solutions provides the
policymaker with alternative instrument vectors for achieving the
same goal. Selecting an instrument vector requires a criterion for
choice. For example, a policymaker might be particularly interested
in a solution in which x; is minimum. In this case, he solves the
linear program

2A geometric proof of the uniqueness of z is given in Simmons (1963).
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Minimize X;
subject to Ax = z*
x =0

Another criterion could be that of finding a solution in which
the sum of several x;’s is minimum. The above linear program may
be used with a new objective, namely, to minimize xil & xiz AN

} 3 -
X1T1

solution, The linear program is the same as above with 2z* replaced
by Z.

5. Numerical Examples

Example 1.
2}!1 -XZ " X3 =5
X1 ok Xg - 2X3 =1
3x4 + 2% - Bx_ = 4
'Xl K2 X3
2 -1 -1 . 5
Here, A= |1 1 -2 y | e Y
3 2 -5 4
and A= 177 -65 17 18
7 -10 -21

5
Since AA y* = [1] = y*, the given system of linear equation has a

solution. One solution is given by

295
*=Ay*= = |-236| %o,
- 59
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174 —21 5{
1

Since 7™ = T —21 30 63
9 63 15_0J

Tl

the solution x " is not unique. To find a nonnegative solution we solve
the following linear programming problem:

Minimize up + u, + uy

subjectto 2x; — X, — X, u, =5
Xi + X3 2%y % + u, =1
3)(1 + 2x: T Ex:; g + U = 4
Xy, X2, X3, Uy, Uy, U3 20

The optimal simplex tableau is given by the following table:

Basic Right Hand
Variables | x; X, X3 u, U, u; [Side
6 10 Objective:
0 0 0 7 0 Fp 0 puction Row
w0 0 o 1 1 --%- 0
O S -%- 3
x o -1 1 4 o -£| 1
An optimal solution is given by
Xy = 3 m = 0
X2 = 0 U = 0
X3 = 1 Uz = 0,

and its objective function value is zero. Hence,x; =8, x, =0, x; =
1 is a solution to the given system of equations.
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The objective function row of the optimal tableau shows that a
nonbasic variable, namely x,, has a zero coefficient. This implies
that the linear programming problem has multiple optimal solutions.
Consequently, the given system of linear equations has multiple non-
negative solutions. Various criteria may be used to select a desired
solution. For example, one can show that the nonnegative solution
X; = 3,%X, =0, x5 =1 is the solution that minimizes x,, Xz, X3,
and x, + X, + X3. If the choice criterion is a nonnegative solu-
tion that minimizes x; +X, + X3 with the added condition that
x, is at least equal to 1, then the desired solutionis x, = 4,
Xq = 1, X 2. :

Example 2
Oy = X == Es =T
Xy + X, _21(3 = 2
31(1 i 2}[2 = 5X3 = 6
2 -1 -1 ! 7
Here, A =|1 A DITE v = 2
3 2 =b 6
1230
Since AAy* = —%7 291| + y¥*, the system does not have a
177 11089

solution. However, it has a least squares solution given by

410
-313
-97

X = vk =
X8y 177

The corresponding goal vector § that is as close as possible to
y* is given by

¥ ] 1 1230 6.9491
y=Ay*= 97 291 A2 1.6441
1089 6.1525

Since AA # I, the least squares solution % is not unique. To
find a nonnegative least squares solution, we solve the linear pro-
gramming problem:
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Minimize u; +u, +us

subjectto 2x; — x, — x3 + u, = 6.9491
x + x, —=2x, *tou, =1.6441
3x; + 2%, —bx; +u =6.1525
X1, Xg,X3, Uy, Uz, U3 = 0.

An optimal solution is given by

Xy = 4.0847 u; = 0
X = 0 u; = 0
x3 = 1.2203 uz = 0.
It follows that
4.0847
X = 0
1.2203

is a nonnegative least squares solution. The optimal simplex tableau
also shows that this nonnegative least squares solution is not unique.
For example,

5.5847
X = 1.5000
2.7203

is another nonnegative least squares solution.
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