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We propose a theoretically consistent method for calibrating input
(and output) price elasticities (of agricultural crops) from a minimal
set of given estimates. Our review of production theory suggests
three starting points for the exercise: (a) inputs and outputs have to
be classified by input nonjointness, (b) production functions may
be assumed to be linearly homogeneous, and (c) given an nxn
(symmetric) matrix of elasticities, which has n(n+1)/2 distinct
cells, the values of n(n—1)/2 of the distinct cells must be known to
solve the n unknown elasticities. Exploiting Shephard’s Lemma and
Euler’s Theorem, we work out the method for a cost function with
four inputs. We also provide a numerical example involving a 9x9
mattix of a multiple-output profit function.
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1. Introduction

How does a shock of one type or another (e.g., an El Nifio or La Nifia event,
a financial crisis, or a revitalized agrarian reform program) affect agricultural
production, in general, and the production of specific crops or livestock, in
particular? How are farm incomes affected? What are the impacts on input
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demands and rural employment? Questions such as these are petennially posed
to a social planner or policy analyst in the agriculture sector. Since shocks are
inevitably felt in terms of price changes, a planner who is tasked to provide
more than just vague qualitative answers needs filled-out matrices of ptice
elasticities of input demands and output supplies as a policy tool for working
out numerically the behavioral responses of farm households.

Unfortunately, such matrices are hard to come by because of data
constraints. Nationally representative cross-section farm-level data on
agricultural outputs, inputs, and prices are virtually unheard of. Instead, what
are usually available from surveys of the agricultural stations are aggregated
data on majot crops or livestock for a limited set of inputs, which afford the
estimation of production, cost, or profit functions that are much simplified
or overly restrictive. (An example for the Philippines is Dumagan and Alba
[2010], which estimates multiple-output generalized Leontief revenue and cost
functions with tegionally aggregated data, in effect assuming a reptresentative
farm in each region.) Consequently, what the analysts usually have in hand are
.. few elasticity estimates that could be econometrically squeezed out of such
data sets.

An intriguing set of technical questions for a planner in the agriculture sector
then is: From the science (as body of knowledge) of production theory, is it
possible to develop a method for filling out matrices of price elasticities from
a few given estimates? Are there ways by which the dimensions of the problem
can be collapsed as was done in Bouis [1996] for food demand?!

An initial attempt to address these questions, this paper proposes a
theoretically consistent method for calibrating input (and output) ptice
elasticities of agricultural crops from a minimal set of “givens.” The next
section discusses certain theoretical considerations that need to be addressed,
given the limitations of data, and explores their implications for the task at
hand. The third section then presents the proposed method, which is based on
Euler’s theorem and Shephard’s lemma, using the implications of the review of
issues as the starting points. The fourth section provides a numerical example.

1 Unlike food demand, however, whose underlying factors may be grouped into 2 few at-
tributes such as the demand for energy in the form of caloric intake, taste preferences, and
preferences for food variety as in Bouis [1996], the supply of agticultural outputs seems not
to lend itself to an analogous treatment. Edmeades [2006], for instance, who uses a hedonic
approach for estimating the value of attributes of bananas in the supply of the crop, bor-
rows the attributes from demand. What this means is that fruits such as apples, bananas, and
oranges, for example, can be collapsed into desired characteristics such as color, taste, size,
ripeness, etc. This does not seem to buy much, however, for the task at hand, unless the pro-
duction functions of the fruits can be mapped into the desired attributes. It is also doubtful
whether consumers substitute between fruits on the basis of these characteristics.
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2. Preliminary issues

2.1. Aggregation over firms?

Itis often the case that firm-level data are unavailable, and the researcher has
to make do with aggregate—that is, provincial- or regional-level—data for an
industry. Since profit, cost, and production functions are firm-level constructs,
the researcher needs to address at least two questions: First, what properties does
an industry’s or a representative firm’s profit, cost, or production function have
to have to ensure that they are consistent with its firm-level version? Second,
what are the implications of these properties? This section considers these
aggregation-over-firm problems in the context of cost functions.

Perhaps almost by definition, an industry cost function (for a province or
region) must be the sum of firm-level cost functions (in the area). Let c¢(w, y)
be the industry-level cost function and ¢; (W, »;) be the cost function of the ith
firm in the mdusr_ry, where w is a vector of input prices and y; is the output of
firmi, for i=1,...,/, sothat y = E ;. Then this property may be described as

y)=§cf(w’yi)' (1)

Let x(w,y;) be the vector of conditional input demand functions of firm i,
so that ¢; (W, y;) = wx; (w, ;). Recall that if the firm-level production function
exhibits constant returns to scale (CRS), the cost of producing y* units of output
may be written as

¢ (w,y*) = wx; (w,y’) =wy'x; (w,1) =y wx; (w,1) = y'¢; (w,1).2

Thus, in the trivial case where each firm produces the same output level
y* and the production function exhibits constant returns to scale, equaﬂon 1)
may be rewritten as

2The discussion here is based on sections 5.6 and 5.7 of Chambers [1988].

3The proof for this claim may be given as follows: Let ¢(w,1) be the cost of producing one
unit of output at input prices W. Then ¢(w,1) = wx (w,1). But by CRS f[y"x(w, )] = y™1,
which implies that y*= f[x(w,y")] = f[¥"x(w,1)] so that x(w,y*).=y*x(w, 1). Therefore,
e(W,y") = wx(w,y") = wy"x(w, 1) = y*wx(w, 1) = y"c(w, 1).
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= gy‘(cf (W,l) - y*gﬁ} (W,l) = yi Gi (}\-’,1)
c(w,I)  Ic(w,1)

where y=1Iy". In effect, aggregation over firms is not a problem because the
industry cost function is simply 2 multiple of both the industry unit cost function
and the arithmetic mean of the firm's unit cost functions, and so reflects the
properties of the (average) firm-level cost function in the industry.

Suppose, however, that the production function is not CRS (so that the
cost function is no longer linear in output) and firms produce different levels
of output, but the distribution of these output levels is not important.# Then
equation (1) may be written as

(w,y)=c [“’2}’:] ici(w'yf) (2

i=l

to underscore that the industry-level output is the sum of the output levels of
firms in the industry.

What restrictions does equation (2) impose on the industry cost function?
Differentiating the equation with respect to y; gives

de(w,y) _dc(w,y) 3y _dc;(w.y;)

a)’j oy a}’j aJ’j
dc(w,y) oc; (W,y;)
= forj=1,...,1, 3
dy aJ’j

since dy/dy; =1. This means thatif the industry cost function is to be consistent
with the firm-level cost functions that it aggregates, the industry marginal cost
must be equal to the marginal cost of the firm that is the source of the change
in industry output. Moreover, since equation (3) must be satisfied, whatever is
the level of y; or regardless of which firm changes its output level, it must be
that the firm-level marginal cost (of all other firms i # J ) 1s not affected, i.e.,
it is independent of, ;- To see this, consider what happens if industry output
is redistributed between firms j and & such that dy ; =—dyy. Then the marginal
effect is measured by

* Alrernanvely, the researcher may have data only on y but not yifor i=1,...,1I
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(ay,y)iydy %ayk P E, 1)y, ackg:yk)dyk
ac(;,y) PR3 ay e, (w j,yj) : ackg:yk) 3
36(;}’)(%+%)=acfa:yj)%,rackg:n)dyk
Ozacf(“"yj)@ SO T

ayj / Ok
ac_,-(W,yj)dy =ack(w,yk)ay

a)’j . Wk %
9¢; (w.3;) _ ey (w,s)
P, i

That is, industry marginal cost does not change (nor does industry total cost),
so that (regardless of the levels of y; and y)) the marginal costs of firms j
and k must be identical for the effects to be completely offsetting. Note, too,

that the marginal costs of firms i (i # j and i # k) are left undisturbed by the
redistribution of outputs.

Given the intent of this paper, it turns out that a further and more relevant
implication of the foregoing result is that industry marginal cost is independent
of industry output. This may be shown by differentiating equation (3) with
respect to yy:

Ze(w,y) _0%c(wy) ¥y dy _9%¢(w.y;)

9y j0yk B ; Wi 9y 0y
Bzc(w,y) _ Bzc(w,y) =i
;9 dy?

In other words, industry marginal cost is unaffected by the level of industry
output:

9 dc(w,y) 9
ay(_ay } 0

so that industry marginal cost may be written as
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dc(w,y)
Alw)=——"=. 4
(w= 2L
Integrating equation (4) with respect to y to recover the form of the industry
cost function thus gives

oc(w,y)
——=dy=|A(w)dy
LT

c(w,y)=A(w)y+c(w), ©)
where ¢”(w) is the constant of integration. Equation (5) indicates that an

industry cost function that is consistent with (2) must have quasi-homothetic
technology.®

5 Quasi-homothetic technology is characterized by straight-line expansion paths (like homo-
thetic technology) that do not emanate from the origin (unlike homothetic technology). This
feature can be shown as follows: Applying Shephard’s lemma on equation (5) gives

dc(w, ) _ 9A(w) " ac® (w)

g X, (W,y)=y o ow

Differentiating with respect to y, we get
ox,(w,y) 9i(w)

dy aw,

Thus, for two inputs, n; and n,, we have
o (w,y)/ay al(w)/aw"

1 = i
anz (w,y)/ay al(w)/&wuz

The expression on the right-hand side of the equation is not a function of output and there-
fore constant, just as in homothetic technology. The expression on the left-hand side 1s the
marginal rate of technical substitution as output expands. It is not independent of output,
unlike in homothetic technology. [Imagine a graph of isoquants. In homothetic technology,
the expansion path of optimal inputs emanates from the origin, so that the ratios of the
optimal inputs remain constant as output expands. This is indicated by the fact that if vertical
lines are drawn from intersection points of isoquants and the expansion path to the horizon-
tal axis, the heights of the vertical lines relative to the bases of the resulting triangles remain
in fixed proportion. In contrast, in quasi-homothetic technology, the expansion path does
not emanate from origin. Consequently, as output expands, the slopes of the isoquants at
their intersection points with the expansion path remain constant, as indicated by the equa-
tion above, but the proportions of the optimal inputs change. This is seen by drawing lines
from the origin to the intersection points. Since the slopes of these rays are different, the
height-to-base ratios of the resulting triangles do not remain constant, unlike in homothetic
technology)]
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Quasi-homothetic technology, however, poses difficulties. Note that
c(w,O) #0, unless ¢° (w) =0. If ° (w) =0, however, then the industry cost
function is again linear in output, meaning that the production function is CRS,
as in the first case considered.

If ¢ (w)#0, then ° (W) may be taken to be a fixed cost, which implies
that equation (5) is a short-run cost function. This is just as well, since it
has been implicitly assumed that the number of firms in the industry, 1, is
exogenous, L.e., the free-entry-and-exit ptoperty of the long-run cost function
has not been consldered Nonetheless, it must be that ¢° (w)>0; otherwise,
for 0< y<3°, where

o__c'(w)
T

costs are nonpositive.

What other restrictions need to be imposed on equation (5) so that it would
exhibit the properties of a cost function? Since costs are nondecreasing in
output, (W) must be nonnegative. For equation (5) to reflect linear homogeneity
in input prices, it must be that

c(tw,y)=A(tw)y +c° (tw)
te(w,y)=tA(w)y+tc®(w),
which implies that both A(w) and ¢’ (w) must be homogeneous of degree one

in input prices. Applying Shephard’s lemma on equation (5) yields

oA ac”
X, (W, )=y aiw)+ caiw) ;

n

which suggests that industry input demands must be affine functions of industry
output. The elasticity of size® of the cost function given in equation (5) is

E*(w,y):[dlnc(W,y)]_ | T A(w)y =l(w)y+c°-(w)‘

diny w)y+cn(w) A(w)y

¢ Elasticity of size is the reciprocal of the output elasticity of cost. In other words, it is the
ratio of average cost to marginal cost. Thus, if " (w,y)>1, average cost must be above the
marginal cost at output level y, so that there is increasing returns to scale; if £”(w,y) =1,
average cost must be equal to marginal cost, so that there is constant returns to scale; if

s.( w, y) <1, average cost must be less than marginal cost, so that there is decreasing returns
to scale. Elasticity of size is a better measure than elasticity of scale in the following sense:
elasticity of scale measures the responsiveness of costs to changes in output levels, hold-

ing input ratios fixed (i.e., along a ray emanating from origin); elasticity of size measutes the
same thing but allows input ratios to change according to theit optimal mixes.
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Thus, equation (5) exhibits constant returns to size only if ®(w)=0.
If cO(w)> 0 [c%(w) < 0], then &*(w,)> 1 [¢"(W,y) < 1], which means that the
industry cost function shows increasing [decteasing] returns to size, except
when output is so large that returns to size is almost constant, since

a 0
lim &*(w,y) = lim Aplyre ()
y—eo y—ree A(W)y

Given these possible ways that £” (W,y) behaves with respect to industry
output, it can be concluded that the industry cost function of equation (5)
has limited ability to generate the u-shaped average cost curves in economics
textbooks.

The upshot of this discussion then is that, when working with industry-
level data, the researcher may just as well assume constant returns to scale
technology, i.e. co( )=0, since it has the least disagreeable implications for
an industry- level cost function. In contrast, assuming that ¢’ (w)<0 implies
that costs are not positive over a range of industry output, while assuming that
° (w)>0 implies that the production function exhibits increasing returns to
scale at finite levels of industry output or that marginal cost is never above
average cost at all levels of output.

2.2. Separability in production technology’

Variables in data sets are often too limited in both number and variety to
adequately represent the full range of inputs and outputs. The researcher then
needs to address the following questions: Under what conditions can input-
output combinations be considered joint or nonjoint production processes?
Under what conditions is technology separable in outputs? Under what
conditions is technology separable in inputs? As descriptions of production
technology are needed to address these questions, this section starts with 2
review of these concepts.

Suppose that a firm handles (M + N) possible goods or services. Let zg
represent units of the {th good or service that the firm uses as an input and zg
be units that the firm produces as an output. Then the firm’s net output of the
fth good or service is given by z, =z§ —zj, withz, >0 (z, <0) implying that
the firm produces more (less) than it uses of the good or service. Collecting the
28 into an (M + N)-dimensional vector z gives what is called a production plan.

Some production plans are technologically feasible; that is, the technological
know-how, methods, and processes exist to use net inputs to produce net

7The discussion here is based on sections 7.1 and 7.4 of Chambers [1988] and chapter 1 of
Vasian [1992].
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outputs. The set of all these technologically feasible production plans is called
the production possibilities set: Z={ze 0 ¥*V|zis feasible}.

Although as specified the set Z is perfectly adequate, in the discussion
that follows it is convenient to maintain a clear distinction between inputs and
outputs. A production posslblhtles set that observes this delineation may be
written as Z = {(x,y)e n¥xoM 1 (xy)is feasnble} where x is an N-dimensional
vector of inputs and ¥ is an M-dimensional vector of outputs.

The set Z is assumed to have the following properties: (a) Z#@ (Z is
not a null set; some production plans are feasible); (b) Z is a closed set (this is
adopted for technical reasons; it guarantees that Z includes its boundaries); (c) Z
is a convex set (this implies that any linear combination of two technologically
feasible production plans is also technologically feasible); (d) if (x,y)€ Z and
X' 2x, then (X',y)€ Z (inputs can be freely disposed of; excess inputs do not
impede production); (¢) if (x,y)€ Z and y’<y, then (x,y’)€ Z (outputs can
be freely disposed of; inputs that can produce a given output bundle can also
produce smaller output bundles); (f) for every finite x, Zis bounded from above
(this guarantees the existence of a production function); and (g) (x, 0, )E Z,
but (0y,y)€ Z if y 20 (zero output is always technologically feasible, but it is
not possible to obtain nonnegative output using no inputs).

Two characterizations of Z are the input requirement set and the producible
output set. The input requirement set is defined by

V(y)={xe|:l | (x,y eZ}

which states that it is the set of all input vectors X that can produce output
bundle y. The producible output set, which is given by

= (x,y)e Z},

is the set of all output vectors that can be produced by a given input vector.

Of primary importance to economists and engineers are the technologically
efficient production plans. A production plan (x,y)€ Z is technologically
efficient if there is no (x',y")€ Z such that X'<xandy’2y, ie, it is not
possible to produce the same output with less inputs or to produce more output
with the same inputs. The set of technically efficient production plans is usually
described by a transformation function,

}’(x)z{ye 0

T:0¥x0M 50 where T(x,y)=0 if and only if (x,y)
is technologically efficient
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The input requirement set and the producible output set may be expressed
in terms of the transformation function as follows:

V(J’)={xEDf|T(x,y)£0} and Y(.\c)z{yeD‘ldr

T(x,y)SO}.

In other words, (X,y)e Z if T(x,y)<0 (since Z is bounded from above
and T(x,y)=0 consists of production plans that yield the maximum y fora
given x or use the smallest x to produce a given y).

This completes the review of the basic concepts. In what follows, various
descriptions of jointness and separability are tackled.

Suppose that an output index g(y) can be defined and a set Z can be specified
such that (x,g(y))€ Z if and only if (x,y)€ Z. Then production technology
is said to be separable in outputs and the input requirement set can be written
as if there was only one output:

V(y)={xe O f\(x,y)e Z}
:{xeﬂ f|(x,g(y))e Z}
:{xe 0 ﬂ(x,g)e Z}

=V (g).

Analogously, suppose that an input index A(x) can be defined and a set Z can
be specified such that (h(x),y)€ Z if and onlyif (x,y)€ Z. Then production
technology is said to be separable in inputs and the producible output set can
be written as though there were only one input:

v(x)={ye0¥|(xy)e |
={ye 0 ¥|(n(x),y)e Z}

={yen¥|(ny)e z}
~Y(h).

A problem with the foregoing definitions, however, is that, being rather
abstract and quite general, they impose minimal structure on technology to be
useful guideposts for empirical research. More instructive for this paper is the
following definition: Technology Z is nonjoint in inputs if, for every (x,y) €Z
input vectors X, 20 can be specified such that
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M
Y S fn(X) and ¥ x, <x form=1,...,M,
m=1

where f,,(x,,) is a production function that satisfies the usual (weak) regularity
conditions, viz., properties (a) to (g) of production technology that were stated
eatlier. A nice feature of the input requirement set of a technology that is
nonjoint in inputs is that it decomposes as the sum of the input requirement
sets of individual outputs:

V(y)= {xe 3

M
Exm <xandy, < f,,(x,) form=1,...,M}

m=1
M
m=l
M
= Y {xn€0 ¥|ym < fn(x)}
m=]
M
= z_:le (-Vm)'

where ¥,(y,,) 1s the input requirement set of the mth output.

In analogous fashion, nonjointness in outputs may be defined as follows:
Technology Z is nonjoint in outputs if, for every (x,y)€ Z, output indices
8,(¥,)=0 can be specified such that

N
X,2g,(y,) and zyn >y forn=1,..,N,

n=1
where g,(y,) is a nondecreasing function of y,, has a producible output set that
is consistent with the regularity conditions of Z, and meets the condition that
2,(0,) = 0. Similarly, the producible output set of a technology that is nonjoint
in outputs has the property that it decomposes as the sum of the producible
output sets of individual inputs:
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I
e, pr—
M=

3
Il
..

M
|:I+

Y(x)

et
m

N
Yy, 2yandx, Zg,,(y,,)fornﬂ,...,N}

n=l

Y2 2 (yn)}

m
|

¥Yn

+

M=

{vae0¥]x, 2, (v,)}

=
It
s

I
M=
o~
—
=
S

]
I
—

where Y,(x,) is the producible output set that is associated with 2{¥,)-

Nonjointness in outputs somewhat stretches credulity: Is it really possible
to specify a producible output set for each input? While sheep (as an input)
can be divided into meat, skin, and wool, for example, surely other inputs are
needed to effect the transformations. Nonetheless, it need only be pointed
out that the definition is consistent with a concept long in use in economics,
viz., the production possibilities curve or the transformation function, which
gives the varying combinations of output levels that can be obtained from a
single input.

To conclude this section, it may be noted that the foregoing definitions
may be combined in various ways to provide more specific descriptions of
production technology as needed by the researcher. For instance, suppose that
Z =UZm’ where Z, ={(x,y)e Z|gm: (eym;y) < for (em»x)} for m"=1,... . M’,
and Z;NZ; =@ forall j# k. That is, production technology can be broken
down into M’ mutually exclusive technologies, where f, (€anX) = fo (%)
[e,, 1sa vector that selects the subset of inputs that go into the production of
the m'th outputindex] and g, (e ymfy) =8 (Yo ) [y is a vector that selects
the subset of outputs that are produced by the m'th production function]. Then
the input requirement set can be written as
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V(Y)={X€Df

M’ M’
2 e,/ X<X, 2 ey 2Y,
m'=] m'=|

and Em' (eJ’M'y) g (exm'x) form’ = ] - M’}

1N
X, €Uy

1

I
M=

e () < fr (e}

I
™M

N
{xmfe[l %

Em’ (ym') < fw (XM')}

<k

Vm’ (g m )

m'=1

That is, the input requirement set is just the sum of the input requirement
sets of the M’ technologies. Consequently, each of the M’ technologies can
be separately studied, the only constraint being that the sum of inputs used

across technologies to produce y cannot exceed the total amounts available in
the whole economy.

2.3. Separability in technology redusc: multi-stage production®

This section explores an issue that, although categorized under separability
and certainly related to what was discussed in the previous section, has a different
emphasis. The practical problem is that there tends to be numerous production
factors (which can tax understanding or overwhelm degrees of freedom in
econometric estimation). If production has a multi-stage structure, however,
such that at earlier stages subsets of inputs are used to produce intermediate
products that in turn are used to produce the final product, the problem becomes
more tractable. The question is, What featutes of the production function allow
it to be specified as having multiple stages?

Assume that the production function is twice continuously differentiable
in its inputs. The property that allows it to have a multi-stage structure is that
the marginal rate of technical substitution between two inputs is not affected
by changes in a third input, that is, if

o | o (x)/ox, _
o, [af(x)/ax,,z ]'0’ ©

where n,, n,, and n; refer to different inputs. When a production function f{x)
has the property desctibed in equation (6), inputs x, and x, are said to be

8 The discussion here is based on section 1.8c of Chambers [1988].
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separable from input x,, . Note carefully what equation (6) indicates: The slope of
the isoquants in n;-n, space is not affected by changes in x,,. But the isoquant
in ny-n, space that describes the level of output produced may be affected by
how much x,, is available. Hence, the relevant isoquant may be farther away
from the origin, the larger is the magnitude of x,.

Another way to represent equation (6) may be derived from it as follows:

3 [af(x)/ax,,l ]:0

of (x)/ax,,z
o f o f

Ox, 0x,0x, Ox, 0x, 0%,

2 ==
of
[ax,,z ]

o s _of Ff
axnz Bxﬂl an3 - ax,,l ann‘zax_,ﬂr3
91 (3w 2x,,) _ 921/ (3x0,251)
ofjax,  I/ox,

_j}_[!ra (af)= *ry Da (af
3 [0x, 0x,, | %, | O [0x,, ox, 0%,

ain(df/ox, ) 9n(df/dx,,)
dlnx,, ~ 9ln X, -

This means that the separability of x, and x,, from x, requires that the elasticity
of the marginal product of x, with respect to x, be equal to the elasticity of
the marginal product of x, with respect to x,,.

There are different types of separability in inputs. To differentiate between
them, we need a notation for partitioning the input vector. Let N ={1,2,...,N }
be the set of input indices. Any scheme for classifying inputs can be described by
a partitioning of A into a set of subsets {\V}, ..., N}, where MuU-—UN;=N
and Ny, "Ny =@ for s#s". Let N'be one particular partitioning of the input
matrix. Then the N-dimensional input vector x will have a corresponding
partitioning {x(I, ..., x(9}, where a subvector x( will have as elements all
inputs x,, such that ne J{fs.‘)

9 Note that partitioning is not at all restrictive. In an agricultural production function for

P g g P s
instance, if the partitioning is done over planting, weeding, and harvesting, labor supply can
be defined art the outset as being differentiated over these activities.
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Using this partiioning notation, we can define the production function to
be weakly separable in partition scheme N if

3 [or(x)/ax, | ) A
o, [aﬂx)/ax,,, =0 formme N, mdne X )

In other words, weak separability in the partition scheme obtains if the
marginal rate of technical substitution between any two inputs in a given input
subvector (or partition) is independent of any othet input that is not an element
of that subvector.

But Goldman and Uzawa [1964] show (in the context of utility functions)
that if f{(x) is strictly quasiconcave and its marginal products ate positive for all
xe 0 ¥, the condition specified in equation (7) is equivalent to the production
function having the form:

£ ) =F[ A (x0)e(x) | ®

where F and each f°(x(%)) are themselves strictly monotonic and quasiconcave.
Since F'is both strictly monotonic and quasiconcave in its arguments, each f°(x())
may be considered an aggregate input formed from the inputs in its partition;
since each f°(x®) is strictly monotonic and quasiconcave in x(), it may itself
be considered a production function. In effect, a production function that is
weakly separable in inputs (in the partition N may be thought of as having
two stages: in the first stage, inputs belonging to partition J‘Cfs are combined to
produce aggregate input £°(x®)); in the second stage, the aggregate inputs are
then combined to produce the final output.

A point that is not often appreciated, however, is that weak separability in
inputs does not merely imply a two-stage production process. This is seen if
equation (7) is applied on equation (8), i.e., the detivative of the marginal rate of
technical substitution between two inputs in partition A/, is taken with respect
to another input that does not belong to the same partition, where we obtain

OF of*
) [af(x)/ax,,l]_ 3 | o ox,

Oy | (x)/0x,, | 0%, | OF 3r*
Lo ox,

s | ¥ (x)fox,
ox,, | gf* (x(f)) /axﬂz

=0 form,me N, andny& N,.
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What this means is that, not only is there a two-stage production process, the
first-stage production functions that produce the aggregate inputs—i.e., S(x)
vs.f* (x6))—must also be independent of each other. A counterexample for this
production structure is an agricultural production function that is partitioned
into planting, weeding, and harvesting: To the extent that weeding cannot
proceed independently of planting, the production function is not weakly
separable in the partitioning

Another type of separability is strong separability: The production function
is strongly separable in partition scheme Nif

d af(x)/ax,,l _ ;
ax@[af(x)/axﬂ, =0 formeNome Ny andme N,UNy. O

Equation (9) states that strong separability in the partition scheme obtains if
the matginal rate of technical substitution between any two inputs, regardless
of the partitions to which they belong—note that J\‘;‘; may be equal to J’Q}—is
independent of any other input that does not belong to either J{f; or J{fs' In
effect, a production function that is strongly separable in a partition scheme
is also weakly separable in that partition scheme, but the converse proposition
is not true.

Again, Goldman and Uzawa [1964] show thatif f(x)is strictly quasiconcave
and its marginal products are everywhere positive, the condition specified in
equation (9) is equivalent to the production function having the form:

f(X)=G[ig"(x(’)]], (10)

s=1

whete G and each g are also strongly monotonic and strictly quasiconcave.
In effect, as in weak separability, each g*(x(*)) may be considered a production
function by itself as well as an aggregate input. But equation (10) is more
restrictive, because it implies that the aggregate inputs are perfectly substitutable
in G. This is readily seen if equation (10) is rewritten as

f(x)=6[gg‘ (x(‘))]ﬂ}[gxs} (11)

where X, = g°(x®). Totally differentiate (11) with respect to- the aggregate inputs
and set the expression to zero. Then, if all detivatives, except those for X and
Xy, are zero, we obtain
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dX; _ dG/oX, _

dX,  9G/oX,

¥

In effect, the first-stage production functions g’(x(%)) are alternative ways of
producing the final output.

A last attribute of a production function that is strongly separable in
inputs is that it is homothetic in the aggregate inputs since Zf=|X s 1s linearly
homogeneous in the Xs.

A third type of separability is factor-wise separability. Let N = N, so that
each partition contains only one element. If the production function f{(x) is
strongly separable in the partition, then it is factor-wise separable. Alternatively,
A(x) is factor-wise separable if

d [af(x)/ax,,l
ax,, | of (x)/ox,,

Following equation (10), we can write a factor-wise separable production
function to have the following form:

f(x)=6[ig" (x,,)]-

n=l

]=0 for n # ny,m # ny, and n, # ny.

But since g"(x,) depends only on x,, the production function can be
rewritten in terms of the x,s:

f(x)= G*[ixn ]

n=1

Input separability thus provides a way for breaking up the production
processes into stages and for aggregating inputs. A crucial restriction of input
separability (at least in the sense that it is used in this section rather than in
Section 2.2), however, is the independence of the (sub)production functions,
given a partitioning of the input vector. This may not be a tenable assumption
in agriculture.

3. An approach to filling up the substitution matrix

Suppose that a researcher has aggregate-level (i.e., provincial or regional)
data on costs, N inputs and input prices, and M’ outputs, but he is able to
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estimate only the own price elasticity of each input for each output. How can
he find the cross-price elasticities of all the inputs?

Based on the review of the issues undertaken above, the researcher has
three starting points. First, he has to group the inputs and outputs according
to input nonjointness. For instance, he may bundle agricultural crops that are
intercropped into an output index, treating it as one (composite) output good.
Second, he may as well assume linearly homogeneous production functions.

Assuming that there are M nonjoint outputs, the researcher’s problem may
be cast as follows:

StY S fu(X,) form=1...M (12)

M
Exm <X,

m=]

where, for simplicity, it is assumed that factor markets are competitive, so that
firms face the same input vector W regardless of their product. Note that the
last constraint ensures that input use does not exceed the total amounts available
in the economy.

If the last constraint does not bind, the solution to this problem is a set of
conditional input demand functions x,,,, (w,ym) form=1,...,.M and n=1,...,N,
since the production functions are separable.

The practical problem that needs to be specified, however, is the size of
the substitution matrix of a given output m, since this determines the number
of unknown cross-price elasticities of input demands that need to be solved,
given the number of own price elasticities that are assumed to be known. With
N inputs, the substitution matrix has N? cells, N of which—the ones on the
principal diagonal—are known. Because the matrix is symmetric, there are
thus (N2 —N)/2 distinct unknown values. In effect, the researcher can have
only three inputs.!0

Constant returns to scale technology can be exploited, however, so that
four inputs can be handled. Let x,,; be labor, x,,, an intermediate good (e.g.,
some composite of fertilizer, pesticide, and irrigation), x,,3 capital, and x,,4 land.
Multiplying the Lagrangean associated with the constrained cost minimization
problem of the mth outputby wyx,,4 (W, ¥, )/ WaXpms (W, Yy ), Whete x4 (W, 3,,)
is the optimal demand for land that is now assumed to be fixed, gives

10Thatis, N =3 is the solution to (N~ N}/2= N.
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L = WaXpma (W, Yy )[{ E E'?-D_—‘h’;—-_]_

nz4 W4 Xm4 (w:ym)
_2"__ 1. Xm1 Xm2 Xm3 =
mn 2 3
Wy xm4(w!ym) xm4(w1ym) xm4(wvym)

]

:w‘lxmti W, Vm [{z 'nXmn ~ [ ( ;:]’x::st;B)_y:i:l]]’

n#4

where W, =w,/ws, A" =AWy,  Xpp =Xp/Xpa(W,¥m), 2and  yr =
Y/ Xma (WY, ). Notice that since wyx,,4 (W, ,,) is simply a scale parameter,
it can be assumed away.

If an interior solution is assumed, the optimal input demands are now
given by x,, = [w,, yml Xpma(Woyp)] for n=1, 2, 3. The resulting cost function
has all the necessary properties. In particular, it is homogeneous of degree one
in factor prices.

By Shephard’s lemma, the substitution matrix of the cost function may be
written as follows:

[ 8% ?%c 3% | [ Ay ax_;,l*

wi®  Owiow, Owiow; | | Ow[ owy oW

o%c 9% % |_|oxpy Oy Oxp (13)
owiowi  Owi®  dwiow] | | dw{  owp owj |

d%c o%c 3% 0%y3  OXp3  OXps
o EwE W | Lo B

where, by Young’s theorem, 0x,,, / oy = 0x,,r / ow,, for n#n’; that is, the
matrix is symmetric. To simplify the notation, rewrite this matrix as

c
e

(14)

Lo~ L <1
T~ T~

f

The problem is to solve for the unknown variables b, ¢, e from a, d, /.
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Since the cost function is homogeneous of degree one in input prices, the
conditional input demand functions, being derivatives of the cost function, are
homogeneous of degree zero. Thus, by Euler’s theorem,

ox,, ox,, ox,
—by + =y + =Lyl =0

By BTZ ¥ aw; +bw; +cw; =0
—ax’”f w;+ax—”’3w; 9%y —Lyr =0 ¢ bw +dw,+ew; =0
. cw +ew, + fwy =0.
0x,3 s x5 Oy x , Omy 0x,,5 Pm3 it~
w wl L owl

The solution to this simultaneous equations system is given by
po QW+ dws? — fwi? C_dwgz—awl ﬁv§2
= ,c=
2w wy 2w wy
2 *2 *2
* ¥ i
2wyw,

The matrix of input price elasticities can now be formed by multplying
each of the “coefficients” in equation (14) by the approptiate wage-to-input-
demand ratio, where the quantities of input demands are the values at which
the evaluation in equation (13) is done:

[~ " * « | [ # * * |
0%,1 44! ax X1 Wz 0X, Wi - W b Wy & Wy
a * * aw a * * * * *

W X 2 X Wy X Xml Xml Xml
* * * * * * *

ox,, W ox: 9% wz X, Wy | p M g M M
2 * % aW J £ % i * & *
W X2 2 mZ W3 X2 Xm2 Xm2 Xm2
a * * a * * a * * * % *
Xm3 W Xm3 W Xm3 W3 Pt MR f Wy
a * # a * * a * * * * *

| W X3 Wy X3 W3 X3 ] L *m3 X3 Xm3

€11 &2 &3
=€ €22 €23
| €31 &32 €33

Note that because the wage-to-input-demand ratios of the off-diagonal

elements of the matrix are not equal, the matrix of input price elasticities is
no longer symmetric.
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Based on the foregoing results, it is possible in principle to recover the 4x4
matrix of price elasticities in the original inputs. Note, for instance, that from
cell 21 of matrices (13) and (14), we have 0x,,, / ow =b, so that

[k = o

Xpo =bwy +c(wf) = k(wf),
where c(wl* ) is the constant of integration. This result in turn implies that
W
Koy k(—l)xm (W, Y )-
Wy

The response of demand for the intermediate good to an increase in the
wage rate is thus given by

= k{ﬁ-}w ) k(ﬁJax’"“ (w,ym)‘

Wy Wy Wy awl

ame
E

The same procedure can be carried out for all the nine cells of matrix (14),
allowing us to form the matrix

% % 9 Oy |
owp Ow, Owy  Owy
m ¥ | [d b g
dw, Ow, Owy Owy | |b d & h
I ¥ | | &
ow Owy Owy Owy | |g i J
Oxg Oxg 0%y Oy
[Ow; Owy 0wy Owy |

where only cells g, A, i, and j ate unknown. Since the input demands X,, (W, ¥, )
are homogeneous of degree zero in input prices, however, Euler’s theorem can
be applied on x,,; to obtain the value for g, on x,,, for 4, and on x,,3 for i. With
g h, and i known, applying Euler’s theorem on x,,4 allows us to get .

4. An example

Two additional points may be noted about the method of calibration being
proposed. First, although the procedure outlined here is based on the cost
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function, it is straightforward to develop a parallel procedure that is based on
the profit or production function. Second, the procedure need not be limited
to 3X3 or 4X4 matrices. Rather, the principle is that there can only be as
many unknown variables as thete are (linearly independent) equations in the
system. Thus, with an nxn symmetric matrix, which has n(n+1)/2 unique
cells, n(n—1)/2 of which are off-diagonal cells whose values come in pairs
and n of which are cells on the principal diagonal, the researcher must seek to
know n(n—-1)/2 to be able to solve for the n missing values.

For applied work, the following consistency conditions can be imposed,
regarding the G known elasticities:

(i) The netput vector may be rearranged such that the lower diagonal matrix
is empty, except for the elements of the principal diagonal itself, which are
all filled up.

(i) In the upper diagonal matrix, each row should have at least one missing
element (except for the singleton row), and each column should have at
least one missing element (except for the singleton column).

Condition (1) ensures that there are no redundancies; it assumes that the
initial estimates are more likely available for the own-price elasticities, rather
than the cross-price elasticities. Condition (ii) ensures that there would be no
inconsistencies in applying Eulet's theorem.

As a specific example, the givens are estimates of quantities and peso values
of outputs and inputs of the aquaculture industry (Table 1), which are taken
from Garcia et al. [2009]. In addition we have a matrix of hypothetical profit
function elasticities (Table 2):

Table 1. Quantities and values of outputs and inputs
of the aquaculture industry

Outputs Quantity Value
Freshwater fish 1 342,697 14,853,544
Brackish water fish 2 277,230 29,497,975

Seaweed 3 1,338,597 6,b40,899
Inputs Quantity Value
Feed 5 672,966 15,774,104
Chemicals 6 396,583 35,45,504
Other intermediate inputs 7 7,270,989 44,964,504
Labor 8 23,755 2,737,585,868
Other primary inputs 9 53,171,865 27,375,868
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Table 2. Matrix of hypothetical profit function elasticities
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1 2 3 4 D 6 7 8 9
1 106 -0.1 0 -0.1 0 -0.1 -0.1
2 0.8 0.1 -0.1 -0.1 0.1 0.1 0.1
3 0.8 0 0.1 -0.1 -0.1 -0.1
4 0.8 0.1 0.1 0.1 0.1
5 -1.0 0.1 0.1 0.1
6 -1.0 0.1 -0.1
7 -1.0 -0.1
8 -1.0
9 0.8
Note that in the table, 36= [(9(9— 1))/ 2} unique elasticities are given, as
required.!! The calibration can be implemented in the General Algebraic
Modelling Systems (GAMS) software package using the following program code:
SETS

i/1,23,4,5,6,7,8,9/

iq(i) /1,2,3,4/
ix(i) /5,6,7,8,9/

ALIAS(,j); ALIAS(iq,iy); ALLIAS (ix,x);

*Data should be enteted in the “natural” values of outputs.
TABLE data(i,%)

1
2
3
4
5
6
7
8
9

qty
342697

277230
1338597
2203346

672966

396583
7270989

23755

53171865

TABLE elast(s,j)

1
1 0.6

2

0.8

value

14853544
29497975

6040899
96000531
15774104

3545504
44964054
27375868
54733419

3 4 ]

0.1 0 -0.1
-0.01 -0.01

0.8 0

11 That the elasticities are all given in the upper triangular part of the matrix is not a limita-

6
0
-0.01
-0.01

7
-0.01
-0.01
-0.01

8

-0.01
-0.01
-0.01

-0.01
-0.01

tion. For as long as there are no redundancies in the required information, an elasticiry on the
lower triangular part of the matrix can always be translated into its counterpart on the upper
triangular part using the approptiate price and quantity information.
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4 0.8 -0.01 -0.01 -0.01 -0.01
5 -1 -0.01 -0.01 -0.01
6 -1 -0.01 0.01

7 -1 0.01

8 -1

9 -0.8

PARAMETER quant(y), y(@), p().m(.});

quant(i) = data(i,“qty”);

p() = data(i,"value")/quant(i);

*The tricky part: translating to “netput” values, to ensure straightforward symmetry of
substitution matrix

y@qQ = quant(q);

y@x) = -quant(ix);

m(Lj) = elast(ij)*y(®/p();

*The following is customized for this problem

PARAMETERS
all, a22, a33, a44,a 55,a 66, a77, a8, a%9,

al3 ,ald4, al5, alé, al7, al8,
a24, a2s, a26, a7, a28, a29,
a35, a36, a37, a38, a39,
ad6, a47, ad8, a49,
as7, as8, aso9,
a68, a69,
a79;

311 = m(“l“,“l“); 322 — rn("2","2"); a33 = m(“3",“3");344 = m("4u,u4"); 355 =
m('lsll'“ 5");
a66 - m("6","6"}; a?? — m(l!-}ll,“?ll); 388 — m('lsl‘,!lslt);agg — m(‘lgl!’ll9!l);

313 = m(“l“,"3"); 314 = m(vl1lf,ll4ﬂ); als = m("l","S"); 3.16 - m(flllt’ltﬁli);
317 = m(uln'u?u);ala - m(vllll,l!sll);

324 = m('lzlf,ll4fl); 325 = m(l!ztl“lsl!); a26 — m(lizﬂ"lﬁl?); 327 — m(llzll,"?");
a28 = m(llzll,'lsl!); a29 — m(l!zll,tlg'l);

335 _ m(ll3ll,lt5lf); 336 = m("3","6"); 337 = m(ﬂ3ll,"??l); a38 = m("3","8");
339 = m("3","9");

346 = m("4","6"); 847 - m("4","7"}; a48 = m{l|4ll,u8lf); 349 - m("4","9");
a57 = m(‘lslt,tl?ll); 258 = m(lis",ltsll); 359 — m(llsfl,llg");

368 = m(“ﬁ“,“a“); 369 = m('lﬁlt,llgrl);
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a79 = m("7","9");

PARAMETERS pl, p2, p3, p4, p5, p6, p7, p8, p9;
pl =p("1"); p2 = p("2"); p3 = p("3"); p4 = p("4");
p5 = p("5"); p6 = p("6"); p7 = p("7"); p8 = p("8"); p9 = p("9");

VARIABLES
x12, x19, x23, x34, x45, x56, x67, x78, x89, OBJ;

EQUATIONS
EqEulerl, EqEuler2, EqEuler3, EqEuler4, EqEuler5, EqEuler6, EqEuler7, EqEuler8,
EqEuler9, EqOBJ;

EqEulerl.. al1*pl + x12*p2 + a13*p3 + al4*p4 + al5*p5 + al6*p6 + al7*p7 + a18*p8
*n0 =F= () -

' ﬂ?-_?;gule]fz.. ?(1,2*[)1 + a22%p2 + x23%p3 + a24%p4 + a25*p5 + a26*p6 + a27*p7 + a28*p8
* =E=0;

' az?ig]g.ulefl.gl,.’)*pl + x23*p2 + a33*p3 + x34*p4 + a35*p5 + a36*p6 + a37*p7 + a38*p8
*0 =F= () -

' nnggzlultit.gl,‘i*pl + a24*p2 + x34*p3 + a44*p4 + x45%p5 + ad6*p6 + ad7*p7T + a48*p8
*nQ =F= () -

' a4?3§}(3)2ul§5..2i5*p1 + a25%p2 + a35*p3 + x45%p4 + a55*p5 + x56*p6 + a57*p7 + a58*p8
*n0 =E=0:

' as?Egglﬂfm"gié*pl + a26*p2 + a36*p3 + a46*p4 + x56*p5 + a66*p6 + x67*p7 + a68*p8
#0 =F=0) -

' “6(]);‘(11’;“157"21’7*131 + a27%p2 + a37%p3 + a47*p4 + a5T*p5 + x67*p6 + a77*p7 + x78*p8
¥, =E=0:

' a?gEcI;lZuleEr:&.{:ﬂ’ 8*p1 + a28*p2 + a38*p3 + a48*p4 + a58*p5 + a68*p6 + x78*pT + aB8*p8
+ %, —F=0-

xsgl’:'.c?éule%..?cl, 9%p1 + a29%p2 + a39*p3 + a49*p4 + a59*p5 + a69*p6 + a79*p7 + x89*p8
+a99*p9 =E=0;

EqOBJ.. OBJ] =E=x12 + x23 + x23 + x34 + x56 + x67 + x78 + x89 ;

MODEL CALIB /ALL/
OPTION NLP = minos5;

SOLVE CALIB minimizing OB] using NLP;

m(nlu’nzn) =x12L; m(‘lllt’ligll) =x19.L; m(nzu,n?’u) - X23Lh m(n3n’n4n) =x34L;
m("4","5") = x45.L; m("5","6") = x56.L; m("6","7") = x56.L; m("7","8") = x78.L; m("8","9")
=x89.L;

PARAMETER lodiag(i,j), kron(ij), matrix(ij), result(ij);
keon(i)) =1;

lodiag(i,j) = m(},i);

matrix(i,j) = m(3,j)*(1-kron(y,))) + lodiag(1,j);
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result(i,) = matrix(i)*p()/y (@)

FILE calelas /c:\AMPLE_GAMS\results\calelas.txt /;
calelas.pc = 6; calelas.nd = 4;

PUT calelas;
PUT ""; LOOP(, PUT itl); PUT /;
LOOP(,
PUT it
LOOP(,
PUT result(i,j)
%
PUT /;
)
The output is displayed in Table 3.
Table 3. Complete matrix of elasticities
1 2 3 4 5 6 7 8 9
1 0.60 086 -0.10 0.00 -0.10 0.00 -0.01 -0.01 0.48
2| 043 0.8 -031 -0.01 -001 -001 -0.01 -0.01 -0.01
3| 025 -1.50 0.80 0.98 0.00 -0.01 -0.01 -001 -0.01
4 0.00 0.00 0.06 080 -082 -0.01 -001 -0.01 -0.01
5 0.09 0.02 0.00 498 -1.00 —4.07 -0.01 -0.01 -0.01
6 0.00 0.08 0.02 027 -18.09 -1.00 477 -0.01 0.01
7 0.00 0.01 0.00 0.02 000 038 -1.00 -0.52 0.01
8 0.01 0.01 0.00 0.04 -0.01 0.00 -0.85 -1.00 1.80
9| -0.13 0.01 0.00 0.02 0.00 0.00 0.01 090 -0.80
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