hilippine Review of Economics and Business
Volume XXXIII, No. 2, December 1996

INSTABILITY OF EQUILIBRIUM GROWTH
(ENDOGENOUS OR NOT)

José Encarnacion, Jr.*

[f the solution to a dynamic optimization problem is interpreted as an
squilibrium growth path, then the Harrod instability proposition applies not only
lo the neoclassical growth model but also to the more recent endogenous growth
Version.

1. Introduction

The Harrod “knife-edge” proposition says that equilibrium
yrowth—Harrod called it warranted growth—is unstable. At one
lime 1t was thought that Solow (1956) and the neoclassical growth
model reversed the Harrod proposition. Actually, that model avoids
the stability question—cf. Hahn (1987)—because it lacks equilib-
num growth in the sense of Harrod. However, an equilibrium
yrowth path could be defined in that model by the solution to a

(lynamic optimization problem. But Kurz (1968) has shown that

that equilibrium path is also unstable. Surveys of the recent
literature on endogenous growth theory—see Helpman (1992),
Hammond and Rodriguez-Clare (1993), Barro and Sala-i-Martin
(1995)—are silent on the stability question. This is surprising since
the model in Romer (1986), which initiated this literature, is expli-
citly based on dynamic optimization, and one would expect that
endogenous growth equilibrium would be similarly unstable.
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Section 2 1s a quick review of the Harrod thesis. Section

argues that there is no equilibrium growth in the neoclassical Ii
|l

model. In Section 4 the solution to an optimization problem ||
interpreted as an equilibrium growth path, which is unstable. Se¢
tion 5 shows instability in the basic model of endogenous growth;
and Section 6 1s a concluding remark. |

!

2. Harrod It

There are various formulations of the Harrod thesis; see'e.g,

Encarnacion (1965) and the references there cited. A simple onj :

might be as follows. Assume that aggregate real output Y require
the amount of capital K = vY (v = const), and desired 1nvestment.,

Kd vY so that firms’ decisions regarding Ylmply a carresljondlng |

K and Vlce versa. Warranted or ethbrlum growth (EG) is defined
by Kd = K where K— sY (s = const), 1.e. UY_ sY or Y/Y"' s/v. Since

K/K = s/v, Y and K will grow at the same percentage rate along th¢ |

EG path. Consumption belng given by (1 —s)Y, output demanded yd
“Kd-l-(l—s)Y while Y = K+(1—-8)Y '

Make the reasonable assumption that if Y% = Y at any given l

time, then the growth rate Y/Y will be maintained, but if Y4 < Y (or
Y?>Y), the growth rate will be reduced (or raised). Noting that K4

< K Y¢< Y, and Y/Y< s/v are equivalent statements, EG instability

is immediate. il

3. The Neoclassical Model

Let Y=F(K, L) where L isthe labor force, assuming that fulli

employment 1s maintained. F 1s homogenous of degree one, 80
putting k= K/L, one can write Y/L = f(k) in per worker terms. The
neoclassical model assumes ['(0) = oo, f'> 0 and f''<0. To simplify

the discussion, we put L/L = (0 but there 1s a capital deprematlon
rate >0 so that

(1) k=fk) —c— pk
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where ¢ = (1 — s)f 1s consumption per worker. In contrast to Harrod,
v 1s variable, full employment holds, and there is no investment

function to determine desired investment k¢ per worker.

Plotting sf(k) and Bk 1n a diagram with‘k on the horiz_ontal

axis, suppose there i1s a stationary point (k% sf(k’)) where k = 0.

Solow (1956) showed that k2 will converge to kY but Harrod’s
question of KG stability was not addressed at all simply because
there 1s no I = S (or investment = saving) equilibrium condition in

the neoclassical model. (1) If pd = sf — Pk 1s considered to be the

investment function, then_kd = k 1dentically in which case the

possibility of disequilibrium growth is ruled out. But equilibrium
growth and stability.are empty concepts without such a possibility,
for the question of stability (which asks whether the economy will
return to equilibrium) can be raised only if there 1s a disequilibrium.
(11) It might be thought that equation (1) can be interpreted as an
[ =5 equilibrium condition. However, that would make the ex post

k+ pk the investment function, which is ex ante. Again, that would

rule out the possibility of disequilibrium. (i11) Finally, it seems to be
the usual understanding that the full employment assumption in
the neoclassical model takes the place of an I = S equilibrium
condition to determine the model. But this only means that the
model would be overdetermined by the addition of an 7 = S condi-
tion since firms do not make investment decisions for the purpose
of maintaining full employment. To summarize, there is growth in
the model, but not equilibrium growth.

4. Optimization
In order to define an EG path 1n the neoclassical model, one

could take the view that the representative (i.e. average) consumer,
who owns the representative firm, has the problem of maximizing

(2) f:u(c(t))e"“‘dt
subject to (1) given k(0); 8 is the discount rate and the utility

function u satisfies u'(0) = o, u'>0 and u" <0. The solution to the
problem gives the optimal growth path which, being optimal, can be
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interpreted as an EG path. Kurz (1968) has shown that if the

production function is Cobb-Douglas and u is a constant elasticity
function, then the saving fraction s is constant along the optimal

path. In what follows we will confine the discussion to the likely

case k(0) < k° assuming a stationary state k.

Formulating the problem in terms of optimal control, the cur:
rent value Hamiltonian H = u(c) + A(f(k) — ¢ — fk) must be maxi.

mized by choice of ¢, so 0H/oc =u'(c) — AL =0 or

(3) u'(c)=A

A has a natural interpretation as the inputed value (in utility

terms) of a unit of k. A necessary condition for the optimal path 18

that A =6\ — AOH/OR or
(4) A=A+ B —FR)
which can be written
(4') MM + OkIOk = 5.

To see the rationale for (4) suppose an additional unit of £ which
raises by the amount 0k/dk. Since A is the (ut111ty) value of u

unit of &, k/k 1s 1ts percentage increase (decrease i1f ?L < (0) per unit
time. Writing R for the left-hand side of (4'), R 1s therefore the
percentage increase in the value of k& one unit time later. On the
other hand, ¢ consumed now can be thought of as having a
value 100 & percent higher from the viewpoint of a unit time later,

Clearly, if R > 3§, one should have more kand less ¢, andif R<9,

there should be more ¢ and less 2. In short, R = & 1s necessary for

intertemporal efficiency whether one is on the optimal path or
off 1t.

In the phase plane with 2 on the horizontal axis and A on the
vertical, every point lies on exactly one trajectory or path and each
path satisfies (1) and (4). Suppose there is a stationary point
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(R°, A?) where 2k =0and A =0. (A =0 where f'(k) =8 + B, and k=0

where ¢ = f(k)—pk. Thus, from (3), A = u'(f — Bk) defines the £ =0
locus.) It is a fact that this stationary point is a saddle point; also,
the optimal path leads to the saddle point asymptotically and it is
the only path that does so. This means that any neighboring path
will diverge from the optimal or EG path, which is therefore un-
stable. Notice that increasing returns are not involved.

It 1s true that in an optimal control problem, ¢ can be chosen
to put a centrally directed economy on the optimal path given
the current value of k&, but this is not the case in the present context
of decentralized competitive agents where equilibrium growth is
merely interpreted as the solution to an optimization problem. If
the economy happens to be on the EG path, it will stay there. But if
some adventitious event puts the economy on a neighboring path,

individual agents will stay on that new path and will not return to
the EG path.

This brings us to the observation that the EG path can be
called a saddlepoint path (Kurz, 1968) or, to use Harrod’s descrip-
tion, a “knife-edge”. Consider any point (k*, A*) on the EG path. A
Taylor linear approximation to (1) and (4) in the neighborhood of
(R*, ") is given by

(1a) k= (k—E)o(f ¢ — BR)OE + (\ — A)O(f — ¢ — BR)OA
(42) A= (k— KON + B — £)/ok + (0 — KON + B — £)/0N
where the derivatives are evaluated at (k”, A"). That is,
(1b) k= Ak + B\ + const

(4b) A= Ck — D\ + const

where A = f'—=B>0, B =-1/u"(c)>0,C=-Af">0,and D=1 —
§—B>0. (InB, ¢ =fk")-Bk" —F")
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The characteristic equation of the system (1b) and (4b) is |

A-¢ B i

1
-

o -~ ||

so the characteristic roots are { = (A - D + (D - A)? + AD + BC)V?)/2,
1.e., the roots are real and opposite in sign, which property charac-
terizes the usual saddlepoint. This makes it appropriate to describg
the EG path itself as a saddlepoint path, showing more directly itd
instability. | 'H']

|

it
5. The Basic Model of Endogenous Growth il
I
In “the basic model” (Romer, 1986, p. 1034) of endogenous
growth with increasing returns to knowledge (or, alternatively,
knowledge and physical capital in fixed proportions), it is assumed
that there 1s a large number N of competitive firms and the repre:
sentative firm has a production function F(k, K, x) where k is it
firm-specific stock of knowledge, K is aggregate knowledge defined
as K= Nk, and x denotes other inputs specific to the firm. (We are
following Romer’s notation so some symbols now have meanings
different from those in the preceding sections, but that should not
cause any confusion.) F' is concave and homogeneous of degree one

in k£ and x given K, and convex in K. Suppressing the fixed x, |
write f(k, K) = F(k, K, x).

The firm’s k, which does not depreciate, can be increased by :
the representative consumer (who owns the representative firm) by
foregoing consumption so that the firm can invest in research: il

(5) kik = g((f - )IE). ||'

It 1s assumed that g' > 0, g" <0, gis bounded from below by g(0) =0
and from above by o < 8. The objective 1s to maximize (2) subject to |1
(5) given k(0) and the path K(¢), t > 0. A normalization puts g'(0) =1

to fix the unit of £ since ¢ and k are measured in different units. '
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The current-value Hamiltonian H = u(c) + Akg, so 0H/oc =
I'—Ag' =0 or

6) u' = Ag'.

A necessary condition for the optimal path is that A =8A — 0H/0k or
7y A =0A — Ok/OFk
= Mo — g —Jg)

where J =f, — (f—c)/k and f, denotes the partial of f(k, K) with
respect to its first argument. Letting k°(f), A(¢), ¢ = 0, denote a
solution to the optimization problem, an equilibrium path requires
the given K(t) to be such that K(t) = Nk'(tf). Romer (1986) gives
sufficient conditions for such a path where 2 and ¢ grow without
bound. There is no stationary point, but as in Section 4, we can pick
any point (", ") on the EG path (provided %" is not too small) for
the purpose of showing instability.

First we note that J >0 if 2 is not too small, for the following
reason. The investment f— ¢ increases k by the amount 2 which

increases f by the amount f,k = f,gk. In effect there 1s an invest-

ment-output relationship such that (f—c)/k gives f,g. Since [, 1s
increasing with £ and K along the EG path but g, which has an
upper bound o <38, canincrease only fractionally, f, must increase
more than (f—c)/k. Thus J >0 for k large enough.

A Taylor linear approximation to (5) and (7) in the neighbor-
hood of (£7, A") is given by

(5a) k= (k— k")okglok + (. — A")Okglon
(7a) A= (k- E)OMS — g — Jg") ok + (A — A" )OMG — g — Jg")/oA

where the derivatives are evaluated at (k", A”). Straightforward
calculations (see the Appendix) give
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(6b) k= AR + B\ + const

(7b) X = Ck — D\ + const

where A =g + Jg' > (
B=—g'g'/(u" + A*g"/k*) > 0
C=-A"(J?%g" k" + g'f,.) >0
D = -A"Jg'g"/(R*u" + A'g") + (g + Jg') > 0.

(D> 0 since A"Jg'g"/(k*u" + A*g") = Jg'l(Ru"/\"g" + 1) < Jg')

,

Seeing that the signs of the coetficients A, B, C and D in (5b) and'
(7b) are the same as those in (1b) and (4b), the last paragraph '.'!_-|';
Section 4 can be repeated here. Thus the EG path in the ]
model of endogenous growth is unstable. "' ',

6. Concluding Remark

We conclude that if equilibrium growth is formulated in th’i
usual way, the Harrod instability proposition has more generalit
than has been thought. We have seen that equilibrium growt} !
paths, whether endogenous or not, are unstable. The implicationg |
for positive theory are clear, since unstable equilibria are rarely \H
be seen. Finally, increasing returns are not necessary for insta_:l

||‘

bility, and of course they are not sufficient given the possibility of

1

built-in stabilizers.
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Appendix

From (6) one has
(A1) u"(c)ocloN = g'— (\g"/R)Ocl O\
w0 that, writing @ = ku'" + Ag".
(A2) Oclolh = kg'lQ
which 1s used to get
(A3) Ogloh =—g'g'/1@Q
(A4) og'lon = —g'g"/Q
(A5) oJ/Iol = g'1q.
Also, one has
(A6) Oglok = Jg'lk
(A7) 0g'lok = Jg"Ik
(A8) 0OdJIok =f,, — JIk.
Using (A3)-(A8) in (ba) and (7a), evaluating all derivatives at
(k*, \7), then gives (5b) and (7b).
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