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The high poverty incidence in the county is a concern that 
needs to be addressed by our policy makers. Official poverty 
statistics from the National Statistical Coordination Board 
(NSCB) show that the reduction in poverty over the past 
two decades has been quite dismal from 38 percent in 1988 
to 26 percent in 2009, or less than 1 percent reduction per 
year. Since poverty incidence has dynamic patterns, studies 
using official poverty data encounter difficulty because of a 
limited number of data points. This study builds econometric 
models in analysing the movement of poverty in the country 
using the quarterly self-rated poverty series of the Social 
Weather Stations. The first model uses Markov Switching to 
determine the states of poverty. It assumes two states: high and 
moderate states of poverty. A high 61 percent of the population 
considered themselves poor when the country is in the state 
of high poverty. In times of moderate poverty, 49.5 percent of the 

1 An earlier version of the paper won the Best Scientific Poster Award during the 2011 
Annual Meeting of the National Academy of Science and Technology (NAST). The 
authors are grateful to the comments and suggestions of the participants of the 48th 
Philippine Economic Society (PES) Meeting, particularly Desiree Diserto and Arsenio 
M. Balisacan. The authors are also grateful to Manuel Leonard F. Albis for his comments.
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population consider themselves poor. The result shows that 
once the country is in the state of high poverty, it stays there for 
an average of 24 quarters, or six years, before moving out. The 
paper then builds a logistic regression model to show what 
determines the states of high poverty. The model shows that 
a 1 percent increase in agricultural output in the previous 
quarter reduces the probability of being in the high state of 
poverty by about 8 percentage points, all things being the 
same. The study shows that poverty incidence in the country is 
dynamic, and frequent monitoring through self-rated poverty 
surveys is important in order to assess the effectiveness of 
the government programs in reducing poverty. The self-rated 
poverty surveys can complement the official statistics on 
poverty incidence.  

JEL classification: C53, I38, I32, Q10
Keywords: Markov switching, logistic regression, self-rated poverty 

1. Introduction

The high poverty incidence in the country continues to be a major 
concern for policy makers, researchers, and students interested in the study 
of the country’s development. Official poverty statistics from the National 
Statistical Coordination Board (NSCB) show that poverty reduction over 
the past two decades has been quite dismal from 38 percent in 1988 to 26 
percent in 2009, or less than 1 percent reduction per year. 

What might explain such dismal performance in poverty reduction 
effort through these years? A quick answer is the country’s poor economic 
growth performance. The Philippines’ economic growth performance is 
no match relative to its East Asian neighbors, as shown in Table 1. While 
neighboring economies such as Thailand and Indonesia have been growing 
by an average of 6 percent to 8 percent in per capita gross domestic product 
(GDP) from 1961 to 2009, the Philippines only managed to grow at about 
4 percent during the same period [Mapa and Balisacan 2011].2 Moreover, 
studies have also shown a weak response of poverty reduction to economic 

2 For the period 1988 to 2009, the country’s real GDP grew by about 3.92 percent while 
the agricultural sector only grew by about 2.36 percent (in 2000 constant prices; NSCB).
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growth for the country (Balisacan and Fuwa [2004]; Balisacan [2007]). 
In particular, a 1 percent increase in per capita income growth results in 
about 1.3 percent to 1.6 percent reduction in poverty incidence for the 
Philippines. The comparative figures for other countries are 2.3 percent 
for Indonesia, 4.9 percent for Thailand, and an average of 2.1 percent for 
countries in East Asia.

Table 1. Comparative economic performance for selected countries in East Asia

  Per capita GDP (in US$ PPP) Per capita GDP growth

  1980 1990 2000 2009 1961-70 1971-90 1991-2009

China 524 1,101 2,667 6,200 4.65 7.82 10.47

Japan 18,647 25,946 28,605 29,688 10.47 4.22 0.9

Korea, Rep. 5,544 11,383 18,730 25,493 8.26 8.02 5.11

Hong Kong 
SAR, China

13,945 23,697 29,785 40,599 10.19 8.24 4.25

Philippines 2,618 2,385 2,587 3,216 4.93 3.86 3.71

Thailand 2,231 3,961 5,568 7,258 8.17 7.39 4.32

Indonesia 1,361 2,087 2,727 3,813 4.18 7.14 4.75

Note: PPP is purchasing power parity.

Source: World Development Indicators (WDI), World Databank, http://databank.worldbank.org/ddp/
home.do.

The latest poverty estimates, for the year 2009, also indicate that 
poverty continues to be concentrated in the rural areas where 40 percent 
of the population is considered poor, while the figure is only 12 percent in 
the urban areas. Hence, the rural sector contributes to about three-fourths 
of the total poor in the country. The disaggregation by sectors would show 
that the poverty incidence in the agriculture sector is about 48 percent and 
contributes to about two-thirds of the country’s poor [Balisacan et al. 2010]. 

A study by Reyes et al. [2010] also provides some explanations linking 
the increase in poverty incidence in 2006 to the lack of increase in the 
real income in the agriculture sector. In explaining the increase of poverty 
incidence in 2006, the authors decomposed the percentage change in 
poverty into the effect of real income and redistribution. The results indicate 
that the increase of poverty incidence in 2006 can be attributed to the lack 
of real income growth and dismal income distribution, even at the time 
of high economic growth. High-output growth, furthermore, only had an 
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impact on the non-agricultural sector, and its effect did not trickle down 
to rural areas where most of the poor people are located. Thus, the authors 
are in support of policies that increase the real income of households with 
effective redistributive efforts. 

In another paper, the same authors, Reyes et al. [2011], distinguish 
the characteristics of the transient poor, “those who are classified as poor 
during a given point in time but were previously non-poor for at least one 
year during the period under study,” and the chronic poor, “those that are 
consistently income poor during the period under study.” The authors used 
a panel data set constructed from 2003, 2006, and 2009 Family Income and 
Expenditure Surveys (FIES) and found that there is a greater proportion 
of chronic poor involved in the agriculture sector than the transient poor. 

The global financial crisis (GFC) that started in 2008 also had a significant 
impact in increasing poverty incidence in the country. Reyes, Sobrevina, 
and de Jesus [2010] looked at the impact of the GFC on the Philippines 
at the household and community levels. The analysis is through the data 
on the different dimensions of poverty obtained from the community-
based monitoring systems (CBMS) being implemented in the Philippines. 
The channels through which the global crisis could affect households 
are through overseas employment and remittances. The authors covered 
ten selected sites distributed all over the Philippines with a total of 3,499 
households. The CBMS data reveal that some overseas Filipino workers 
(OFWs) (12.9 percent of all households interviewed) were retrenched 
during the period November 2008 to April 2009. A large proportion (25 
percent) of OFWs who were retrenched came from Saudi Arabia. About 9.3 
percent of the households with OFW reported that their OFW experienced 
wage reduction during the period. Moreover, 71.4 percent of the OFWs who 
experienced wage reduction are working in Asian countries. An estimated 
7.1 percent of all households experienced a decline in the frequency of 
receipt of remittances. Majority of these households (79.1 percent) reported 
a decline in their monthly income from the business. Some of the employed 
individuals also experienced a reduction in wage, number of working hours, 
and employment benefits. Results show that poverty incidences in most of 
the sites increased in 2009 compared to their previous CBMS round. Results 
of this study showed that the potential impact of the crisis varies across 
different groups of households. The crisis has affected the households in 
terms of OFW remittances and local employment. This may, therefore, result 
in an increase in poverty incidence, albeit modestly. In response to the 
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crisis, households adopted various coping strategies that may be damaging 
and counterproductive in the long run (such as withdrawal of children 
from school). Although the government has identified and implemented 
some programs that could mitigate the impact of the crisis, more efficient 
targeting is necessary. 

Balisacan et al. [2010] showed that the impact of the GFC on the 
economy and the social sector is severe and may linger for many years to 
come. The study showed that the GFC pushed down the GDP growth rate 
from its long-term trend (of about 4.7 percent) by 1.0 percentage point in 
2008 and 3.8 percentage points in 2009. Moreover, the authors showed that 
if there was no GFC and the economy moved along its long-term growth 
path, average household income would have increased by 1.8 percent 
between 2008 and 2009, causing poverty to fall, rather than increase (from 
2006 to 2009), by about 0.4 percentage points during the same period. 
Given these estimates and current population growth projections, nearly 
two million Filipinos were pushed to poverty owing to the GFC.

This paper examines the dynamic patterns of poverty incidence and 
the economic factors that determines poverty incidence using the quarterly 
time series data from the Social Weather Stations (SWS) national poverty 
surveys. A Markov switching model is used to determine the “states” of 
poverty incidence, classified as “moderate” and “high” states. The paper 
then builds a logistic regression model to show what economic factors 
determine the states of high poverty. An important feature of this paper 
is the mainstreaming of the time series data on poverty incidence from 
the SWS into the econometric model. The organization of the paper is as 
follows: section 2 discusses the different methods of measuring poverty 
incidence in the Philippines, section 3 presents the econometric models 
using the Markov switching and the logistic regression models for poverty 
incidence, and section 4 concludes. 

2. Measures of poverty incidence 

2.1. National measures of poverty

Poverty is a complex phenomenon and a multidimensional concept. In 
the Philippines, there are several existing measures of hunger incidence. At 
the national level, there are two commonly reported measures of poverty: 
(1) the number of poor families and individuals reported by the National 
Statistical Coordination Board (NSCB), and (2) the self-rated poverty 
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incidence collected by the SWS. The NSCB statistics on the number of poor 
families and individuals are measured from the FIES (available every three 
years) and are also the official statistics on poverty in the country. The SWS 
measure of poverty incidence is collected every quarter and is referred 
to as the direct measure of poverty since this is compiled on the basis of 
responses of individuals to questions about their experiences about poverty.

2.1.1. NSCB measure of subsistence incidence

The official statistics on poverty incidence is the number of families 
that are considered poor. In accordance with NSCB Resolution 1, Series of 
2003, Approving the Proposed Methodology for Computation of Provincial 
Poverty Statistics, estimation of poverty starts with the computation of 
the food threshold, which is determined by using regional menus priced 
at the provincial level. The one-day menus were determined by the 
Food and Nutrition Research Institute (FNRI) using low-cost, nutritionally 
adequate food items satisfying basic food requirements of 2,000 calories, 
which are 100 percent adequate for the Recommended Energy and 
Nutrient Intake (RENI) for energy and protein and 80 percent adequate 
for the RENI for vitamins, minerals, and other nutrients. These menus were 
used to estimate the per capita per day food cost. This is then multiplied 
by 30.4 (approximate number of days per month) to get the monthly 
food threshold or by 365 days (30.4 days/month x 12 months) to get 
the annual per capita food threshold. After the computation of the food 
threshold, the estimation of the poverty threshold to include the additional 
income required for the sustenance of the minimum nonfood basic needs 
follows. Nonfood basic needs include the following: clothing and footwear; 
fuel, light, and water; housing maintenance and other minor repairs; 
rental or occupied dwelling units; medical care; education; transportation 
and communications; nondurable furnishing; household operations; and 
personal care and effects. Hence, to compute for the poverty threshold, the 
food threshold is divided by the proportion of the food expenditures (FE) 
to total basic expenditures (TBE) derived from the latest FIES using the 
FE/TBE’s of families within the +/- ten percentile of the food threshold. 
The resulting estimate is the annual per capita poverty threshold [NSCB 
2007]. The official poverty incidence in 2009 is about 26.5 percent of the 
total population, or around 23.14 million Filipinos are considered poor. 
The figures in Table 2 show an increasing percentage of Filipinos who are 
poor from 2003 to 2009. 
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Table 2. Official poverty incidence among population (2003, 2006, and 2009)

Major island 
group

Poverty incidence 
among population  
(%)  

Magnitude of poor population Share to

    Total poor population (%)

2003 2006 2009 2003 2006 2009 2003 2006 2009

PHILIPPINES 24.9 26.4 26.5 19,796,954 22,173,190 23,142,481 100 100 100

Luzon 16.7 18.6 17.9 7,564,531 8,857,020 8,850,387 38.2 39.9 38.2

Visayas 34.8 34.9 35.2 5,447,582 5,839,316 6,213,233 27.5 26.3 26.8

Mindanao 36.8 37.8 39.6 6,784,840 7,476,854 8,078,861 34.3 33.7 34.9

Source: NSCB

2.1.2. SWS measure of poverty indicator

One criticism of the official statistics for measuring poverty by the NSCB 
is that “being infrequently applied, (it) has fostered an illusion that poverty 
steadily declines” [Mangahas 2009]. For one thing, the FIES is conducted 
only once every three years, and the official hunger and poverty incidence 
statistics were reported only nine times from 1985 to 2009. The poverty 
and hunger incidence statistics from the 2012 FIES will only be released 
in 2013. Due to the lack of a frequent measure of poverty incidence in the 
country, government officials depend on the national quarterly surveys on 
poverty conducted by the SWS, particularly during periods between the 
FIES years.3 The SWS is a private, nonprofit scientific institute established 
in 1985 to generate social survey data. In the SWS approach, the poverty 
self-rating does not depend on any predetermined or top-down poverty 
line. In each survey, the household head—the respondent for poverty and 
hunger questions, speaking in behalf of the entire family—is asked to point 
to where he or she thinks the household fares in a showcard featuring only 
the word POOR, the negative (not the opposite) term NOT POOR, and a 
line in-between. Half of the sample uses the left showcard, and the other 
half uses the right showcard, in order to eliminate positioning-bias. The 
word consistently used for POOR, mahirap, expresses the least degree of 
hardship among various Tagalog terms for poverty. The terms for POOR in 
other Philippine languages used in the SWS surveys are in the panel below 
the showcards. The SWS self-rated poverty incidence is the proportion of 
household heads who point to word “mahirap” or POOR, when presented 

3 Government agencies involved in poverty mitigation efforts, such as the Department 
of Social Welfare and Development (DSWD), National Anti-Poverty Commission (NAPC), 
and the National Economic and Development Authority (NEDA), make use of the SWS 
poverty incidence indicator to gauge the effectiveness of the strategies.
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with the showcard by the survey interviewer. This measure of poverty 
uses the subjective view of the household head, speaking in behalf of the 
family. “Yet it is characterized by objectivity, because it can be validated 
by independent surveys using the same approach, just as the subjective 
expression of voting intentions in one survey can be validated by other 
independent surveys” [Mangahas 2009]. The SWS quarterly survey has 1,200 
respondents from various parts of the country. The SWS quarterly hunger 
indicator is reported beginning April 1983 and has been measured 99 times 
until the second quarter of 2012. 

Figure 1 shows the plot of the SWS self-rated poverty incidence (SRP) 
from the first quarter of 1992 to the second quarter of 2012. In addition, 
the Hodrick-Prescott (HP) filter estimate of the long-term trend, denoted by 
TREND_SRP, in the self-rated poverty is also reported.4 The long-term trend 
estimate shows that self-rated poverty incidence is generally declining from 
the 65-70 percent level in 1992 to the 50 percent level in 2012. However, 
the SRP movement is quite volatile, fluctuating from a lower level (around 
the 50 percent) to a relatively high level (60 percent) over the entire period, 
showing that poverty incidence, as measured by the SRP of the SWS, is very 
dynamic. The general decline in the SRP incidence is further highlighted in 
Table 3 where the average SRP incidence across different administrations 
exhibits a decreasing but gradual trend.

Table 3. Average self-rated poverty (SRP) incidence  
through different administrations

President/Administration Average SRP

Benigno S. Aquino III (2010-2012) 50.00 

Gloria Macapagal Arroyo (2001-2010) 54.38 

Joseph E. Estrada (1998-2001) 59.55 

Fidel V. Ramos (1992-1998) 62.44 

Corazon C. Aquino (1986-1992) 63.46 

Source: Self-rated poverty (SRP) from SWS and authors’ computation of the long-term trend. 

4 The HP filter, first proposed by Hodrick and Prescott [1997], uses a smooting method 
to obtain an estimate of the long-term trend component of a time series. The HP filter 
computes the permanent trend component of a time series yt by minimizing the 
variance of yt around the trend component, subject to a penalty that constrains the 
second difference of the trend component. 
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In addition to the NSCB’s official measure of poverty and the SWS self-
rated poverty incidence, other authors have proposed different measures 
of poverty. One of the more promising measures is suggested by Balisacan 
[2011] using the multidimensional poverty index (MPI). This measure treats 
poverty as being a multidimensional phenomenon, with education, health, 
and standard of living as its dimensions, rather than being determined by 
income (or expenditure) alone. The MPI is computed as 
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deprived, and revealing the interconnections among deprivations. This is 
so because the MPI can systematically assess the magnitude, intensity, and 
sources of multidimensional poverty. The study seeks to assess the nature, 
intensity, and sources of multidimensional poverty in the Philippines. 
One important result of the study is that, unlike income poverty, MPI 
responds to growth. Moreover, all three sources (FIES, APIS, and NDHS) of 
the MPI estimate (all three of these sources have the data necessary for 
the computation of MPI) show continued reduction in multidimensional 
poverty. In other words, MPI actually declined as the economy expanded in 
the past decade. The diversity of both deprivation intensity and magnitude 
of poverty across geographic areas and sectors of the Philippine society is 
enormous, suggesting that, beyond growth, much needs to be done to make 
development more inclusive. Another remarkable result is that all three data 
sets provide the same ranking of the three broad dimensions of poverty. 
Standard of living contributed the most to aggregate poverty, followed by 
health and education. The study also showed that the poverty profiles are 
robust to assumptions about the poverty cutoff.

3. Econometric models	

3.1. Markov switching model

In modeling the dynamic movement of the SRP incidence, the authors 
used a nonlinear time series model known as the Markov switching model 
proposed by Hamilton [1989]. The Markov switching model uses the idea 
of the Markov process. Consider the stochastic process 
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optimal inference concerning the regime probabilities as 
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either be taken to be a fixed vector of constants, which sum to unity or can be included as 
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𝑠𝑠𝑡𝑡−1 = 2, and 𝑃𝑃 is the transition probability matrix. In practice, however, the regime at time t – 1

is unknown, as it is unobservable. The best one can do is replace 𝜉𝜉𝑡𝑡−1 in (2) by an estimate of the 

probabilities of each regime occurring at time t – 1 conditional upon all information up to and 

including the observation at t – 1 itself. Denote the 2 × 1 vector containing the optimal inference 

concerning the regime probabilities as 𝜉𝜉𝑡𝑡−1|𝑡𝑡−1� . Given a starting value 𝜉𝜉1|0� and values of the 

parameters contained in θ, one can compute the optimal forecast and inference for the 

conditional regime probabilities by iterating on the pair of equations

                                                                          𝜉𝜉𝑡𝑡|𝑡𝑡� = 𝜉𝜉�𝑡𝑡|𝑡𝑡−1⊙𝒇𝒇𝑡𝑡
1′�𝜉𝜉�𝑡𝑡|𝑡𝑡−1⊙𝒇𝒇𝑡𝑡�

                                    (9)

                                                                  𝜉𝜉𝑡𝑡+1|𝑡𝑡� = 𝑃𝑃 ∙ 𝜉𝜉𝑡𝑡|𝑡𝑡�                                              (10)

for t = 1,⋯,n, where 𝒇𝒇𝑡𝑡 denotes the vector containing the conditional densities for the two 

regimes and ⊙ denotes element by element multiplication. The necessary starting values 𝜉𝜉1|0� can 

either be taken to be a fixed vector of constants, which sum to unity or can be included as 

separate parameters that need to be estimated.  

Finally, let 𝜉𝜉𝑡𝑡|𝑛𝑛� denote the vector which contains the smoothed inference on the regime 
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Finally, let ξt|n
� denote the vector which contains the smoothed inference on the regime 

probabilities—that is, the estimates of the probability that regime j occurs at time t given all 

available observations, 'P (st=j|In;θ). Kim [1993] developed an algorithm to obtain these regime 

probabilities from the conditional probabilities ξt|t
� and ξt+1|t

� given in (9) and (10). 

Returning to (9), the denominator of the right-hand side expression actually is the 

conditional log likelihood for the observation at time t, which follows directly from the 

definitions of ξt+1|t
� and ft. As shown in Hamilton [1989], the maximum likelihood (ML) 

estimates of the transition probabilities are given by

                                                                pij� =
∑ P(st=j,st-1=i|In;θ�)n

t=2

∑ P(st-1=i|In;θ�)n
t=2

                                        (11)

where, 𝜃𝜃� denotes the maximum likelihood estimates of θ. Moreover, the estimates ∅𝚥𝚥� of ∅𝑗𝑗 can 

be obtained from a weighted least squares regression of yt on xt, with weights given by the 

smoothed probability of regime j occurring. Putting all of the above elements together suggests 

an iterative procedure to estimate the parameters of the Markov switching model. This procedure 

turns out to be an application of the expectation maximization (EM) algorithm developed by 

Dempster, Laird, and Rubin [1977]. It can be shown that every iteration increases the value of 

the likelihood function, and thus the final estimates are ML estimates. McCulloch and Tsay 

[1994] also considered a Markov Chain Monte Carlo (MCMC) method to estimate a general 

MSA model. The MSA model can easily be generalized to the case of more than two states. The 

computational intensity increases rapidly, however. For simplicity and easy interpretation of 

results, this paper works on only two states. The innovational series {a1t} and {a2t} are sequences 

of independent and identically distributed random variables with mean zero and finite variance,

and are independent of each other. A small pij means that the model tends to stay longer in state i.

In fact, 1/ pij is the expected duration of the process to stay in state i. In this paper, the authors 

extend the methodology by modeling the unconditional probability of being in the state of high 

poverty using the logistic regression model. This model has as its response variable a binary 

variable that corresponds to the two states generated by the Markov switching model (the states 

of “high” and “moderate” poverty). The explanatory variables examined may then be considered 

potential determinants of poverty in the Philippines.

3.1.1. Empirical results of the MSA model
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shown that every iteration increases the value of the likelihood function, 
and thus the final estimates are ML estimates. McCulloch and Tsay [1994] 
also considered a Markov Chain Monte Carlo (MCMC) method to estimate 
a general MSA model. The MSA model can easily be generalized to the case 
of more than two states. The computational intensity increases rapidly, 
however. For simplicity and easy interpretation of results, this paper works 
on only two states. The innovational series {a

1t
} and {a

2t
} are sequences of 

independent and identically distributed random variables with mean zero 
and finite variance, and are independent of each other. A small p

ij
 means 

that the model tends to stay longer in state i. In fact, 1/ p
ij
 is the expected 

duration of the process to stay in state i. In this paper, the authors extend 
the methodology by modeling the unconditional probability of being in the 
state of high poverty using the logistic regression model. This model has as 
its response variable a binary variable that corresponds to the two states 
generated by the Markov switching model (the states of “high” and “moderate” 
poverty). The explanatory variables examined may then be considered 
potential determinants of poverty in the Philippines.

3.1.1. Empirical results of the MSA model

In this study, the authors made use of the Markov switching autoregressive 
model to determine two states of poverty incidence in the country using 
the quarterly SWS self-rated poverty incidence data. The authors utilized the 
SWS survey data from the first quarter of 1994 up to the fourth quarter of 
2009. The estimation procedure was done using the R language. A maximum 
likelihood estimation procedure was used to estimate the parameters of 
the model, and the results are shown in Table 4. 

Table 4. Estimation results of a Markov switching autoregressive  
for the self-rated poverty series

State 1 (High poverty incidence)

Parameter c1 Φ1 Φ2 σ1 p12

Estimate 19.17 0.49 0.19 4.13 0.04

Standard error 6.543 0.115 0.108 0.356

State 2 (Moderate poverty incidence)

Parameter c2 Φ1 Φ2 σ2 p21

Estimate 68.84 -0.40 0.014 1.63 0.31

Standard error 5.95 0.097 0.108 0.599
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The figures from Table 4 show that the mean percentage of poor 
households in state 1 (high poverty) is about 61.1 percent (computed as 
19.17 / (1 – 0.49 – 0.19)), while the mean percentage of more households 
in state 2 (moderate poverty) is about 49.5 percent (computed as 68.84 / 
(1 – (–0.40 + 0.014)). Moreover, the transition probabilities (p

12 
and p

21
) are 

different in both states. On the one hand, the transition probability from a 
moderate state of poverty to a high state of poverty is rather high at 0.31. 
On the other hand, the transition probability from a high state of poverty to 
a moderate state of poverty is only 0.04. The transition probabilities show 
that it is more likely to enter into a state of high poverty than to get out of 
that state. Probing into these transition probabilities, we can calculate the 
expected duration in each state. The expected duration in a state of high 
poverty is about 24 quarters. This means that, on average, the state of high 
poverty in the Philippines lasts around 24 quarters, or six years. Moreover, 
the expected duration of a period of low poverty is about 3.22 quarters. 
That is, when the country is in the moderate state of poverty, the condition 
is expected to last for about three quarters only, or less than a year. The 
results from the MSA model show that the country tends to stay longer in 
high poverty than out of it. The coefficients of both AR (1) and AR (2) differ 
largely between the two regimes, indicating that the dynamics of poverty 
in the Philippines are different for the moderate and high poverty levels.

Figures 2 and 3 are the filtered and smoothed probabilities, respectively. 
The graphs show the dominance of state 1 (high poverty) over state 2 
(moderate poverty) in most of the data points in the series. This confirms 
the results suggesting that the series stays longer in state 1 (high poverty) 
than in state 2 (moderate poverty). However, there is a silver lining: the 
graph shows that in the last quarters, the series has a high probability to 
be in state 2 (moderate poverty) than in state 1 (high poverty). 
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Figure 2. Filter probabilities for state 1 (high poverty)  
and state 2 (moderate poverty)

Figure 3. Smoothed probabilities for state 1 (high poverty)  
and state 2 (moderate poverty)
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3.2. Logistic regression model (determinants of the high state of poverty)

The econometric model used in analysing the determinants of the high 
state of poverty is the logit model. Consider the linear model 

)12(,...,2,1...22110 niXXXy ikikiii =+++++= εββββ 	 (12)  

where the variable of interest, y
i
, takes on the value 1 if the SRP incidence 

in the high state and value 0 if the SRP incidence is in the moderate state. 
The X

1
, X

2
, …, X

k
 represent the determinants of the high state of poverty 

incidence. 
Note that y

i 
is a Bernoulli random variable with probability of success,π, 

or y
i
 ~ Be(π). The problem in economics is that most likely π is unknown and 

not constant across the observations. The solution is to make π dependent 
on X

i
. Thus, we have 
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where the function F(·) has the property that maps  β0+β1X1+β2X2+…+βkXk 
onto the interval [0,1]. Thus, instead of considering the precise value of y, 
we are now interested on the probability that y = 1, given the outcome of 
β0+β1X1+β2X2+…+βkXk , or,
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where F is a continuous, strictly increasing function and returns a value 
ranging from 0 to 1. The choice of F determines the type of binary model. 
Given such a specification, the parameters of this model (the betas) can be 
estimated using the method of maximum likelihood. Once the identifiable 
parameters are established, the likelihood function is written as
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In the case of the LOGIT model with a single explanatory variable, the 
probability of success is given by
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The parameters of the model are estimated using maximum likelihood. 
Using the likelihood function,
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We can obtain an expression for the log-likelihood,
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Differentiating the log-likelihood function with respect to the parameter 
vector β and set the vector of derivatives equal to zero:
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where f(.) is the probability density function associated with the F(.). 
Simplifying, we have
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Combining the two terms inside the brackets, we have
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In the logit model, we can simplify the last equation using the fact that
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The simplification yields:
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The likelihood equations associated with the logit models are nonlinear 
in the parameters. Simple closed-form expressions for the ML estimators 
are not available, so they must be solved using numerical algorithms. 

3.2.1. Marginal effects

Interpretation of the coefficient values is complicated by the fact 
that estimated coefficients from a binary model cannot be interpreted as 
marginal effect on the dependent variable. The marginal effect of X

j 
on the 

conditional probability is given by,

18 
 

Differentiating the log-likelihood function with respect to the parameter vector β and set 

the vector of derivatives equal to zero:

where f(.) is the probability density function associated with the F(.). Simplifying, we have

Combining the two terms inside the brackets, we have

In the logit model, we can simplify the last equation using the fact that
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where f(·) is the density function corresponding to F(·). In here, βj is 
weighted by a factor f(·) that depends on the values of all the regressors in 
X. The direction of the effect of a change in X

j
 depends only on the sign of 

the βj coefficient. Positive values of βj imply that increasing X
j
 will increase 

the probability of the response, while negative values of βj will decrease 
the probability of the response. The marginal effect is usually estimated 
using the average of all the values of the explanatory variables (X) as the 
representative values in the estimation.

3.2.2. Average marginal effect

Some researchers (particularly Bartus [2005]) argue that it would be 
more preferable to compute the average marginal effect—that is, the average 
of each individual’s marginal effect. The marginal effect computed at the 
average X is different from the average of the marginal effect computed at 
the individual X. 

3.2.3. Explanatory variables (determinants of high state of poverty incidence) 

The explanatory variables (X) used to explain the high state of poverty 
incidence include (a) the quarterly agricultural output (in natural logarithm), 
(b) the quarterly government expenditures (in natural logarithm), (c) the 
quarterly underemployment rate, and (d) the quarterly food component of 
the consumer price index (in natural logarithm). 
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3.2.4. Empirical results from the logistic regression model

The figures in Table 5 show the percentage of quarters that exhibited a 
high state of poverty from 1994 to 2009. Out of the 64 quarters, the country 
experienced a high state of poverty in 47 quarters (73 percent) and only 
17 quarters in the moderate state of poverty (27 percent).

Table 5. Frequency distribution of the states of poverty  
(1st quarter 1994 to 4th quarter 2009)

State of poverty Frequency Percent

Moderate state 17.00 26.56

High state 47.00 73.44

Total 64.00 100.00

The results of the logistic regression model are shown in Table 6. The 
sign of the estimated coefficients of the explanatory variables is consistent 
with expectations. The results show that increasing output in agriculture 
(one quarter ago) decreases the probability that the country will be in the 
“high” state of poverty. In particular, a 1 percent increase in agricultural 
output in the last quarter decreases the probability of “high” state of poverty 
by about 8 percentage points. Increasing government spending (one quarter 
ago) decreases the probability that the country will be in the “high” state 
of poverty. A 1 percent increase in government spending in the last quarter 
decreases the probability of “high” state of poverty by about 11 percentage 
points. Higher underemployment rate in the current quarter increases 
the probability that the country will be in the “high” state of poverty. 
Every 1 percentage point in current underemployment rate increases the 
probability of “high” state of poverty by about 4 percentage points. Higher 
food prices in the current quarter also increases the probability that the 
country will be in the “high” state of poverty. Every 1 percentage point in 
food inflation increases the probability of “high” state of poverty by about 
4 percentage points.

The logistic regression model shows that government spending and 
expansion in agriculture are two crucial components that will reduce the 
probability of a high state of poverty in the country.
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Table 6. Estimated coefficients of the logistic regression model

Variables Estd. coeff. Std. err. z-stat P-value

Agricultural output (in log; lag 1) -0.9318 *** 0.2245 -4.1500 0.0000

Underemployment rate 0.0370 ** 0.0174 2.1200 0.0340

Government expenditures (in log; lag 1) -1.4771 *** 0.3780 -3.9100 0.0000

Food CPI (in log) 0.0426 * 0.0288 1.4800 0.1380

*** Significant at the 1 percent level; ** significant at the 5 percent level; * significant at the 10 percent level (one-
sided alternative).

The figures in Table 7 show the forecasting performance of the logistic 
regression model. Out of the 46 quarters that are classified as being in the 
high state of poverty, the model was able to correctly predict 44 quarters, 
or a sensitivity value of 96 percent. Moreover, out of the 17 quarters that 
are classified as being in the moderate state of poverty, the model was able 
to correctly predict 13 quarters or a specificity value of 76 percent. Overall, 
the model was able to correctly classify 90 percent of the quarters into 
either high or moderate state of poverty.  

Table 7. Percentage of correct prediction of the logistic regression model

Actual outcome

Model classification High poverty Moderate poverty Total

High poverty 44 (96%) 4 48

Moderate poverty 2 13 (76%) 15

  46 17 63

4. Conclusion

This paper examined the dynamics of poverty incidence in the 
Philippines using the self-rated poverty incidence data of the SWS and 
found that poverty incidence can be classified (using the Markov switching 
model) as either a high state of poverty, occurring at the 60 percent level, or 
a moderate state of poverty, occurring at around the 50 percent level. The 
results also show that it is more likely for the country to be in the high state 
of poverty than in the moderate state of poverty. Moreover, once in high 
state of poverty, the country stays there for a long time (about 24 quarters). 
On the contrary, once it experiences a moderate state of poverty, it lasts 
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for only three quarters. The results suggest that the high state poverty in 
the Philippines is persistent.   

The logistic model has identified four important determinants of the 
high state of poverty in the country. On the one hand, increasing the output 
of the agricultural sector (lag 1 quarter) and the level of government 
expenditures (lag 1 quarter) reduces the probability that the country will be 
in the high state of poverty. On the other hand, increasing underemployment 
rate and food prices increases the probability of being in the high state of 
poverty. This study shows the relative importance of agriculture in output 
on poverty reduction. Government programs to alleviate poverty should 
focus on boosting the agricultural sector’s productivity and mobilizing the 
labor force to reduce the level of underemployment, another important 
factor in reducing poverty incidence. 
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