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PRE

Time-varying conditional Johnson SU density  
in Value-at-Risk methodology

Peter Julian A. Cayton* and Dennis S. Mapa *,**

Value-at-Risk (VaR) is a standard method of forecasting future 
losses in a portfolio of financial assets. An alternative method 
of estimating VaR using time-varying conditional Johnson 
SU distribution is introduced in this paper, and the method is 
compared with other existing VaR models. Two estimation 
procedures using the Johnson distribution are developed in the 
paper: (1) the joint estimation of the volatility; and (2) the two-
step procedure where estimation of the volatility is separated 
from the estimation of higher parameters, i.e., skewness and 
kurtosis. Empirical analyses of the two procedures are illustrated 
using data on foreign exchange rates and the Philippine Stock 
Exchange index. The methods are assessed using the standard 
forecast evaluation measures used in VaR models. Modeling 
procedures where estimation of higher parameters can be 
integrated in VaR methodology are introduced in the paper.

JEL classification: C22, C58, G12, G32
Keywords: time-varying parameters, Generalized AutoRegressive Conditional 

Heteroskedasticity models, non-normal distributions, risk management, 
financial econometrics

1. Introduction

Financial institutions engage in investment activities to expand their assets so 
that they can provide their clients with quality financial products and services. 
In these activities, financial institutions incur risks of loss from their investment; 
losses may cause bankruptcy. In the intricate web of the financial sector, the 
downfall of large institutions or many firms may lead to a financial crisis.

Central banks as financial regulators require financial institutions to comply 
with levels of allowable incurred risk in financial activities. Risks in financial 
activities are categorized into three kinds: (1) credit risk, which is incurred by 
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lending to other institutions; (2) market risk, which is incurred by keeping a 
portfolio of assets where prices are determined by market forces, e.g., stocks, 
commodities, and currencies; and (3) operational risks, which are incurred from 
internal operations of the institutions, such as electricity and office equipment 
failures [bsp Memo Circular No. 538]. Financial regulators observe international 
guidelines on risk capital adequacy over financial institutions, as stipulated by the 
Basel Committee on Banking Supervision [2004]. 

This paper focuses on market risks where time series analysis and econometric 
modeling are used in building models. In managing market risks, one of the 
common tools used to measure risk is Value-at-Risk (VaR). VaR is the maximum 
potential loss in a financial position or portfolio during a given time period 
such that there is a low and pre-specified probability that the actual loss may 
be larger. A common approach to VaR estimation is to treat the conditional 
mean and variance of the return series as changing over time. The conditional 
mean is usually estimated using the AutoRegressive-Moving-Average models 
and its conditional variance using the Generalized AutoRegressive Conditional 
Heteroskedasticity (garch) models. 

Empirical evidence on asset returns shows unequal leverage effects due to 
negative shifts and fat tails in the distribution of the data. These data characteristics 
correspond to the left-side skewness (extremely large losses) and leptokurtosis (fat 
tails), which are changes in the shapes of distributions of returns [Tsay 2002]. In 
the existence of means and variances that are changing over time, the concept of 
time-varying densities in financial asset returns is gaining ground, and questions 
arise as to whether or not there is strong evidence for these behaviors in profits 
and losses [Jondeau et al. 2007]. 

The objective of the paper is to derive a VaR methodology that incorporates 
time-varying shape characteristics in the estimation framework. The Johnson SU 
distribution with time-varying parameters is assumed in the VaR model as the 
underlying distribution of the returns [Yan 2005]. Two procedures are devised 
that incorporate changes in the density: (1) a joint estimation in which mean and 
variance models are incorporated in the likelihood function; and (2) a two-step 
approach where the mean and variance models generate residuals to be fitted with 
the Johnson SU density. These procedures in estimating VaR are then compared 
with other existing methods using Philippine financial time series data and are 
evaluated for accuracy using the different statistical tests.

1.1. Returns from asset prices

Returns are relative capital gains from possessing financial assets and equities 
(Jorion [2007]; Tsay [2002]). For an asset of price Pt at time t, an arithmetic return 
describes the relative change of price based on most recent previous price. The 
arithmetic return at time t is defined as [Jorion 2007]:
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 rt = (Pt – Pt–1 ) / Pt–1 (1)

The geometric return, also known as log-return, of an asset at time t is defined 
as [Tsay 2002]:

 rt = log(Pt / Pt–1 ) (2)

The logarithm is of base e, the Euler number. It is favorable to use the log-
returns due to its additive property [Jorion 2007]. The logarithmic transformation 
of the data is favored since it restricts prices as positive values compared to 
the arithmetic returns and reduces the magnitude of volatility in price changes 
[Chatterjee et al. 2000]. With the statistically favorable advantages, returns 
computed in the paper are log-returns. 

1.2. The definition of Value-at-Risk

VaR is the maximum potential loss of a financial position or portfolio during 
a given time period such that there is a low and pre-specified probability that the 
actual loss may be larger. Tsay [2002] gives a more formal definition that deals 
with probability. Suppose that at current time t, a VaR value is to be estimated for 
k periods ahead. Let rt be the financial asset return series of interest to be evaluated 
with a distribution function F

rt

 (x), where a negative return means loss in the long 
position. Define F

rt

-1(q) = inf {F
rt 

(x) ≥ q} to be the quantile function for a left-
tail probability q. Let the risk probability for extreme loss be p, commonly used 
values are 0.01, 0.05, or 0.10. Then the 100(1 – p)% value-at-risk of possessing 1 
unit of an asset k periods ahead is equal to [Tsay 2002]:

 VaR : p = P(rt+k ≤ VaR) = F
rt+k

(VaR) or VaR = F
rt+k

-1(p) (3)

In estimating VaR for an asset, the following elements are needed: (1) the 
probability p; (2) the forecast horizon k; (3) the data frequency, e.g., daily or 
weekly; (4) the distribution of asset returns; and (5) the amount of position for the 
asset [Tsay 2002]. 

1.3. The family of Value-at-Risk methods

The historical method. In evaluating the quantile of a distribution for VaR, a 
simple approach is to solve for sample quantiles based on historical data on asset 
returns. If {r1, r2, ..., rt} is a subset of data on consecutive periods of the return 
series of an asset with window length t, and r(i) is the ith smallest return in the 
window, then the one-period ahead 100(1 – p)% VaR is equal to:
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 VaRHist = r([tp]) + (tp – [tp]) (r([tp]+1) – r([tp])) (4)

where [q] means the integer part of the real number q (Tsay [2002]; Fallon and 
Sarmiento-Sabogal [2003]). For example, in a window of an asset return series 
with 1,500 data points, the long-position 99 percent VaR would be the first 
percentile of the data, which is the 15th smallest return value.

In this method of estimation, the assumed distribution of the data is the 
empirical distribution of returns. It avoids the possible misspecification by not 
assuming mathematical probability distributions. It is an easy method of estimating 
VaR without dealing with statistical complexity. A caveat of the method is that 
it assumes the distribution is similar between past observed values and future 
unobserved values of the returns [Tsay 2002]. The static approach ignores the 
time-varying nature of asset returns, especially its volatility. In addition, the use 
of sample quantiles in estimating the true quantiles at the tails of the distribution 
is very unreliable with very high variation [Danielsson and de Vries 1997].

Econometric methods. Using these methods in VaR estimation involves the 
specification of the following: (1) conditional mean structure μt as a function of 
time t, e.g. using AutoRegressive-Moving-Average models [Box et al. 1994] or 
regression models with exogenous explanatory variables; (2) conditional variance 
equation ht for volatility as a function of time, e.g., using the AutoRegressive 
Conditional Heteroscedasticity (arch) class of models (Engle [1982]; Bollerslev 
[1986]; Nelson [1991]); and (3) specification of the standardized error distribution 
εt ~ Fε, e.g., using the standard normal distribution (Engle [1982]; Longerstaey and 
Spencer [1996]), the standardized t distribution [Tsay 2002], or the generalized 
error distribution [Nelson 1991].

Given that these three elements are fully specified and all model parameters 
are estimated, the one-period ahead 100(1 – p)% VaR is equal to:

 VaREcon = μ̂t+1 + � ĥt+1Fε
-1(p) (5)

The hats over the mean and variance specification imply one-step ahead 
forecasts for the mean and variance of the return series, respectively. The function 
Fε

-1 is the quantile function of the standardized error distribution.
An example of popular models in the econometric method is the RiskMetrics 

model of J. P. Morgan [Longerstaey and Spencer 1996]. The model assumes that 
the conditional mean of the returns is zero and the conditional variance follows 
an Integrated garch model. Moreover, the assumed error distribution of the data 
is the standard normal distribution. In equation form for the log-return series rt:

 rt = 0 + �ht εt ; εt  ~ N(0,1); ht = λht–1 + (1 – λ)ε2t–1   (6)
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The parameter λ describes the variance process as an exponentially weighted 
moving average and is determined to be any number between 0.9 and 1 
(Longerstaey and Spencer [1996]; Tsay [2002]). 

One problem of the RiskMetrics methodology is the assumption of normality 
of the distribution. The distribution of financial returns tend to deviate from the 
normal distribution and are more likely to be heavy-tailed, with higher probability 
of extreme values (tail values) occurring in the changes of asset prices compared 
to the normal distribution [Tsay 2002]. Since the normal distribution is inadequate 
in modeling financial returns, another compromise is to use the t-distribution, 
which has a bell-shaped density curve but with fatter tails compared to the normal 
distribution. When an appropriate mean and variance model has been fitted for 
the standardized t distribution, the one-step ahead 100(1 – p)% VaR for the t 
distribution with v degrees of freedom is given by [Tsay 2002]: 

 VaREcon,t = μ̂t+1 + ( tp,v / �v / v – 2) � ĥt+1 (7)

The tp,v is the pth lower quantile of the t distribution with v degrees of freedom. 
The parameter v and other model parameters are jointly estimated.

Conditional density methods. These methods deal with fitting distributions 
with parameters that are time-dependent [Jondeau et al. 2007]. The econometric 
methods are special cases of this class of procedures. Distributions used usually 
require more than two parameters, which would include shape parameters such 
as those that affect skewness and kurtosis. In this family, higher parameters 
are modeled with a time-varying structure to adapt to the concept dynamics 
in higher moments. Distributions that have been used in the literature are the 
skewed Student’s t distribution (Hansen [1994]; Harvey and Siddique [1999]), 
Pearson Type IV distribution [Yan 2005], Johnson SU distribution [Yan 2005], 
Edgeworth series densities [Rockinger and Jondeau 2001], and the Gram-Charlier 
densities [Jondeau and Rockinger 2001]. Each distribution has its caveats and 
advantages, such as those that directly influence the skewness and kurtosis but 
are computationally intensive to estimate the quantiles, e.g., the Gram-Charlier 
densities and Edgeworth series densities (Jondeau and Rockinger [2001]; 
Rockinger and Jondeau [2001]), and those which produce computationally and 
analytically derivable quantiles yet do not directly influence the coefficients 
of skewness and kurtosis, such as the Pearson IV and Johnson SU distributions 
[Yan 2005]. Due to the computational ease of estimation for parameters using 
maximum likelihood estimation and analytically derivable quantiles after 
estimation [Yan 2005], the Johnson SU distribution is considered in this paper for 
time-varying conditional density.
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2. The Johnson SU distribution

The Johnson SU distribution is one of the distributions derived by Johnson 
[1949] by translating the normal distribution to certain functions. The cumulative 
distribution function of the jsU distribution is shown below. If Y ~ JSU(ξ, λ, γ, δ):

 P(Y ≤ y) = FY (y; ξ, λ, γ, δ) = Φ� γ + δ sinh-1�(y – ξ ) / λ�� (13)

The function Φ(u) is the cumulative distribution function of the standard 
normal distribution. From the equation above, the quantile function FY

-1 can be 
directly derived as:

 

 

FY
-1 (p; ξ, λ, γ, δ) = ξ + λ sinh ��Φ-1 (p) – γ� / δ� (14)

The quantile function depends on the quantiles of the standard normal 
distribution Φ-1 (p)

 
which are easily tractable. The density of the jsU distribution, 

which will be used for the estimation procedure, is equal to [Yan 2005]: 

fY
 (y; ξ, λ, γ, δ) = δ / � λ �1 + �(x – ξ) / λ �2 �φ�γ + δsinh-1�(x – ξ ) / λ�� (15)

The function φ(u)
 
is the probability density function of the standard normal 

distribution. The parameters of the jsU are (ξ, λ, γ, δ)' with each affecting the 
location, scale, skewness, and kurtosis of the distribution. The parameters are not 
the direct raw moments of the distribution. The first four moments, the mean, 
variance, third central moment, and fourth central moment, respectively, of the 
distribution are the following [Yan 2005]:

 μ = ξ + λω1/2 sinh Ω (16)

 σ2 = (λ2 / 2)(ω – 1)(ωcosh 2Ω + 1) (17)

 μ3 = –(1/4)ω2(ω2 – 1)2� ω2 (ω2 + 2)sinh 3Ω + 3sinh Ω)� (18)

 μ4 = –(1/8)(ω2 – 1)2� ω4 (ω8 + 2ω6 + 3ω4 – 3)cosh 4Ω 
 + 4ω4 (ω2 + 2)cosh 2Ω + 3(2ω2 + 1)�  (19)

The quantities in the moment equations are Ω = γ / δ and ω = exp(δ-2). The 
standard distribution for the jsU exists when ξ = 0 and λ = 1, but the mean and 
the variance are not 0 and 1, respectively. To use the Johnson distribution as a 
standardized error distribution in econometric modeling (e.g., in AutoRegressive-
Moving-Average-garch modeling), we set the parameters in the following 
manner [Yan 2005]:



 The Philippine Review of Economics, Volume LII No. 1, June 2015 29

 ξs = –ω1/2 sinh Ω��1/2(ω – 1)(ωcosh 2Ω + 1)�
-1

 (20)

 λs = ��1/2(ω – 1)(ωcosh 2Ω + 1)�
-1  

(21)

2.1.Joint estimation procedure for JSU distribution

From the standardization of the distribution, mean-variance specifications can 
be introduced for econometric modeling with the jsU distribution. For maximum 
likelihood estimation, the higher parameters can be modeled to have a time-
varying structure, ultimately introducing dynamic properties to the skewness and 
kurtosis. In modeling using the jsU density with joint estimation of parameters 
having time-varying structures, the following are sets of equations are defined:

 Mean-Variance-Error Equation: yt = μt + �htzt (22)

 Mean Specification: μt = gμ(t) (23)

 Variance Specification: ht = gh(t) (24)

 Error Specification: � E(zt) = 0; var (zt) = 1;

 

zt ~ JSU(ξS,t, λS,t, γt, δt) (25)

 Third Parameter Specification: yt = gγ(t) (26)

 Fourth Parameter Specification: δt = gδ(t) (27)

The functions gμ, gh, gγ, and gδ are time-dependent functions related to t, e.g., gμ 
≡ ARMA(p,q) process for the mean, gh ≡ GARCH(p1,q1) for the variance, gγ(t) = β0 
+ β1xt–1 for the structure of the third parameter, and gδ(t) = δ0 a constant value for 
the fourth parameter. The location and scale parameters are functions of the time-
varying third and fourth parameters due to standardization of the jsU distribution, 
i.e., 

 ξS,t = f1(γt, δt) , λS,t = f2(γt, δt)

In this structure, it is implied that the skewness and kurtosis would have time-
varying properties due to the structure of the third and fourth parameters. 
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The log-likelihood sum to be maximized for estimation is written below: 

l (μt, ht, γt, δt � γ1,..., γn) 

 = ��log�fY��yt  – μt� ��ht; ξS,t , λS,t, γt, δt)�–½log[ht]�� (28)

The use of the functions gμ, gh, gγ, and gδ as arguments in the log-likelihood 
function implies the estimation of the parameters inside these functions. The 
location and scale parameters should be substituted for the appropriate functional 
form based on gγ and gδ. If lagged values of the time series data are being used, 
the addends of the summation are reduced to adapt to the use of lags.

2.2. Two-step procedure for JSU distribution

Another estimation procedure that introduces time-varying mean and variance 
specifications in the jsU distribution is a two-step procedure, where first the return 
series rt are fitted with the appropriate model for mean μt and variance ht and 
estimation is carried out using quasi-maximum likelihood estimation (qmle) 
[Bollerslev and Wooldridge 1992].

 et  = �rt  – μ̂t��� ĥt  (29)

From these residuals, they are fitted with the jsU distribution with structures in 
the third and fourth parameters. The log-likelihood to be minimized would be of 
the form below:

l (γt, δt | e1,..., en) 

 = ��log�fY�yt  – μt ��ht; ξS,t , λS,t, γt, δt)���  (30)

2.3. Value-at-Risk formula using Johnson SU distribution

After the estimation of the parameters of the model, either through the joint 
estimation or the two-step procedure, the one-step ahead 100(1 – p)%

 
long 

position VaR is equal to:

VaRJSU
 = μ̂t+! + � ĥt+1�ξ̂S,t+1 + λ̂S,t+1sinh��Φ-1 (p) – γt+1 � / δ̂t+1 ��  (31)

n

t=1

n

t=1
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The paper then compares the performance of VaR of the time-varying jsU with 
other VaR methods using Philippine financial time series datasets, applying the 
usual evaluation procedures associated with VaR. 

3. The evaluation of VaR methods

3.1. Number of exceptions: Basel Committee on Banking Supervision 
requirements

A popular evaluation procedure of the VaR methods is done through the 
number of exceptions [Basel Committee on Banking Supervision 1996]. A VaR 
exception occurs when the actual loss exceeds the value of the anticipated VaR. 
Depending on the VaR probability level, a specific amount of VaR exceptions are 
allowed per year. For example, for the 99 percent VaR, it is expected and permitted 
that the number of exceptions be equal to 1 percent of the total number of periods 
in a year. In 250 time periods, a maximum of four exceptions are allowed. The 
number of exceptions of the VaR model is classified into three zones: (1) the 
green zone; (2) the yellow zone; and (3) the red zone. Depending on the number 
of exceptions for a given year, a penalty multiplier in introduced in the calculation 
of appropriate risk capital based on VaR. Table 1 displays the multipliers for each 
zone and number of exceptions.

TABLE 1. Classification zones based on number of exceptions and appropriate 
scaling factors for risk capital

Zone Number of 
exceptions

Scaling factors for the 
market risk capital

Green zone

0

1

2

3

4

3.00

3.00

3.00

3.00

3.00

Yellow zone

5

6

7

8

9

3.40

3.50

3.65

3.75

3.85

Red zone 10 or 
more 4.00

Source: Basel Committee on Banking Supervision [1996]
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3.2. Number of exceptions: likelihood ratio tests

Another method for assessing the performance of the VaR model is based 
on the method’s adherence to the desired risk probability. Christoffersen [1998] 
introduced a system of successive Chi-Square tests to assess the VaR methods 
based on the number of exceptions within the forecast evaluation period. Three 
tests are conducted on the frequency of exceptions, done successively: (1) the 
unconditional coverage test, which tests whether the risk probability is fulfilled 
by the VaR model; (2) the independence test, which tests whether the probability 
of two successive exceptions is equal to the proportion of exceptions succeeded 
by non-exceptions; and (3) the conditional convergence test, which tests whether 
the probabilities of successive and non-successive exceptions are equal to the 
coverage probability. When an initial test leads to the acceptance of the null 
hypothesis, it is a favorable result for the VaR model and a succeeding test is 
conducted. If an initial test leads to rejection, then the succeeding test is not done 
and we conclude the given VaR procedure does not have a favorable property 
based on the test. The sequence of tests is listed in Table 2. The logarithms are all 
in base e.

3.3. Magnitudes of values

As risk capital is based on the value of VaR, the magnitude of the VaR methods 
are analyzed and compared. Three general features should be considered by 
an appropriate method: (1) conservatism, which indicates that it generally give 
a relatively higher VaR compared to other methods; (2) accuracy, in which the 
method is able to identify the level of loss with minimum error in the magnitude; 
and (3) efficiency, in which the method is able to compute the adequate level of 
risk capital such that risk is fully accounted yet not too high that the opportunity 
loss for other financial activity is constrained [Engel and Gizycki 1999]. Statistical 
measures are selected for each quality as a measure of their compliance with the 
desired feature. Table 3 shows the statistics and their intended analysis. Though 
only one measure of accuracy is shown, the analyses of the number of exceptions 
are also taken as accuracy measures by Engel and Gizycki [1999].
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Using these evaluation procedures, the paper assessed the time-varying 
methods in estimating VaR using the jsU distribution and compared it with other 
VaR methods suggested in the literature.

3.4. Empirical results 

In the evaluation of the different VaR methodologies, the following financial 
time series data are used: (1) the Philippine Peso-us Dollar Exchange Rate 
(rusd) from 4 January 1999 to 10 November 2011; (2) the Philippine Peso-Euro 
Exchange Rate (reur) from 4 January 1999 to 18 November 2011; and (3) the 
Philippine Stock Exchange index (psei) from 3 January 2000 to 18 November 
2011. 

To generate out-of-sample forecasts, the last 250 data points of each series are 
used for forecast evaluation while the rest of the periods are used in the estimation.  

The data series are evaluated with long position 99% one-step-ahead 
VaR values. The two VaR models based on the time-varying jsU methods are 
evaluated and compared with six different VaR models: (1) garch(1,1) with 
normal distribution (using Quasi Maximum Likelihood Estimation or qmle); 
(2) garch(1,1) with Student’s distribution; (3) tarch(1,1,1) with normal 
distribution (using qmle); (4) tarch(1,1,1) with Student’s t distribution; (5) 
a rolling 250-period historical simulation quantile method; and (6) RiskMetrics 
method with λ = 0.95. 

garch(1,1) is based on the model by Bollerslev [1986] with the form for the 
variance given below:

ht = α0 + α1ht–1 z
2
t–1 + βht-1 (32)

The argument zt-1, is the standardized error of one period before, and the 
parameters (α0, α1, β) are estimated. The model assumes a symmetric effect of 
changes in the immediate past to the variance of current changes, i.e., it assumes 
no leverage effect. To account for asymmetric effect of past changes to current 
volatility, tarch(1, 1, 1) [Zakoian 1994] adds a term on the volatility and models 
the conditional standard deviation. Thus in modeling the variance, the equation is 
modified as shown below:

ht = �α0 + α1 � �ht–1zt–1 � + ψI(0,∞) ��ht–1zt–1� � �ht–1zt–1 � + β�ht–1�2

 I(0,∞)(u) = � 0 if u ≤ 0 
 

  

1 if u > 0  (34)

For the joint estimation of parameters on the jsU distribution, the following 
specification of the variance, third, and fourth parameters are shown below:
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  ht = exp�θ0 + θ1 � �ht–1zt–1 � + θ2�ht–1zt–1 + θ2log h (20
t-

)
1 � (35)

 γt = φ0 + φ1 � �ht–1zt–1 � + φ2�ht–1zt–1 + φ2SK (20
t-

)
1  (36)

 δt = ζ0 + ζ1 � �ht–1zt–1 � + ζ2�ht–1zt–1 + ζ2K (20
t-

)
1  (37)

The terms h (20
t-

)
1 , SK (20

t-
)

1 , and K (20
t-

)
1  are a rolling-window 20-lag variance, 

skewness, and kurtosis of returns modeled to affect changes in the variance, third, 
and fourth parameters of the jsU distribution.

For the two-step procedure, the variance is estimated with the garch(1,1) 
model and the residuals were modeled with the jsU using equations (36) and (37) 
with �ht–1 = 1 since the residuals have unit variance. The mean specification for all 
models was set to zero, i.e., μt = 0 and rt = �ht zt . 

4. Descriptive analysis of the data

4.1. Graphical analysis of the levels and returns

Figure 1 displays the graphs of levels and returns of the rusd series. A period 
of increase or depreciation of the Philippine peso occurred from before 1999 to 
2001 primarily due to the effects of the Asian financial crisis and political crisis 
in the Philippines. Stability in the level of the exchange rate was achieved from 
2002 to 2004, and the appreciation of the peso started in 2005. Another round of 
depreciation started in 2008 until 2009 when the peso again appreciated. In the 
return series, the occurrences of very large changes were at end of 2000 until 
early 2001, most likely due to political uncertainty during the impeachment and 
eventual ouster of president Joseph Estrada. After 2001, stability in the changes 
was observed until after 2008, when changes in the return series were showing 
wider ranges compared to the period 2002 to 2007.

FIGURE 1. Time plots of US dollar exchange rate

Price level Returns
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The graphs of the reur are shown in Figure 2. With the euro, a surge of 
depreciation of the peso occurred from 2001 to 2005. Since then, the changes 
were relatively stable, except in 2008-2010 during which the euro had a wave 
of upturns and downturns with respect to the peso. In terms of volatility, large 
changes occurred during the latter part of 2000 up to early 2001. A period of 
stability in changes was observed in during the period 2002 to 2007, followed by 
large volatility during the global financial crisis of 2008 to 2009.

FIGURE 2. Time plots of euro exchange rate

Figure 3 shows the time plots of the Philippine Stock Exchange Index (psei). 
The index experienced a surge in level in 2002 and the increase lasted until 2007. 
The index retreated during the late 2007 until early 2009, most likely due to the 
global economic crisis, before expanding during the second quarter of 2009. 
In terms of volatility, two sharp increases were observed at the end of 2000 
and the start of 2001. Stable variance was observed during the period 2002 to 
2007 followed by sharp downward changes at the end of 2008. Two spikes were 
observed in 2010. 

FIGURE 3. Time plots of Philippine Stock Exchange index

Price level Returns

Price level Returns
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4.2. Summary statistics of returns

The values in Table 4 show the different summary statistics of the return 
series. The series have high kurtosis values, suggesting fat tails or non-normal 
distribution. Moreover, the return series associated with the currencies (rusd 
and reur) have negative skewness, while the return series on the psei is skewed 
to the right, perhaps due to the bullish performance of the stock market in the 
observation period. The return series on the psei is also the most volatile with a 
wider range between the minimum and the maximum values and high standard 
deviation. 

TABLE 4. Summary statistics of the financial returns

RUSD REUR PSEi
Obs 3192 3300 2990
Mean 2.950×10-5 7.827×10-5 2.332×10-4

Standard deviation 4.290×10-3 7.602×10-3 1.441×10-2

Skewness -4.482 -2.070 0.462
Kurtosis (unadjusted) 115.221 43.303 20.662
Minimum -.101 -.142 -.131
Maximum .0402 .0441 .162

5. Results and discussion

5.1. Number of exceptions

Table 5 shows the results of statistics based on the number of exceptions and 
likelihood ratio tests for the different VaR methods. The econometric methods 
performed better in terms of the number exceptions compared to the jsU 
procedures. The econometric methods had a maximum of four exceptions (green 
zone) compared to the jsU and RiskMetrics methods that are in the yellow zone 
(5 to 9 exceptions). The historical quantile method is at the middle, in the yellow 
zone for the two assets.

The tests for independence and conditional coverage were not conducted in 
some cases because no VaR exception was observed for the econometric methods 
in all series, the jsU, quantile, and RiskMetrics methods in rusd and reur 
return series. Other p-values in the psei return series from the jsU, quantile, 
and Riskmetrics methods were still shown, even though in some results it may 
indicate rejection of initial desirable characteristics.



 The Philippine Review of Economics, Volume LII No. 1, June 2015 39

TABLE 5. Evaluation measures based on exceptions

Model Joint JSU Two-step JSU

  Time series RUSD REUR PSEi RUSD REUR PSEi

  Number of exceptions 2 6 9 2 6 7

Likelihood ratio tests p-values

  Unconditional coverage 0.742 0.001 0.742 0.019

  Independence - - 0.002 - - 0.174

  Conditional coverage - - 0.000 - - 0.025

  Model GARCH QMLE GARCH t

  Time series RUSD REUR PSEi RUSD REUR PSEi

  Number of exceptions 1 4 2 1 2 2

Likelihood ratio tests p-values

  Unconditional coverage 0.278 0.381 0.742 0.278 0.742 0.742

  Independence - - - - - -

  Conditional coverage - - - - - -

  Model TARCH QMLE TARCH t

  Time series RUSD REUR PSEi RUSD REUR PSEi

  Number of exceptions 1 4 2 0 2 2

Likelihood ratio tests p-values

  Unconditional coverage 0.278 0.3815 0.742 - 0.742 0.742

  Independence - - - - - -

  Conditional coverage - - - - - -

  Model Historical quantile RiskMetrics

  Time series RUSD REUR PSEi RUSD REUR PSEi

  Number of exceptions 2 3 5 1 5 8

Likelihood ratio tests p-values

  Unconditional coverage 0.742 0.758 0.162 0.278 0.162 0.005

  Independence - - 0.000 - - 0.000

  Conditional coverage - - 0.000 - - 0.000

The likelihood ratio tests for the joint jsU methods and RiskMetrics showed 
poor performance using the psei return series. Using these methods results in a 
low confidence of achieving the appropriate risk probability for the series, with 
higher risks that the joint jsU and RiskMetrics estimates of VaR frequently and 
consecutively exceed by actual losses. The quantile method performed generally 
well in covering the appropriate risk levels, yet are very susceptible to exception 
clustering, risking portfolio to have frequent consecutive extreme losses. The two-
step jsU performed well using coverage and noexceptions clustering for the psei 
return series. This suggests that the two-step jsU method may result in a better 
model compared to the historical quantile and RiskMetrics procedures.
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5.2. Magnitudes of values

The results of the assessment using the magnitude-based statistics for 
comparison between different VaR methods are shown in Table 6. Using the Mean 
Relative Bias (mrb) criterion, the jsU methods were generally less conservative 
compared to the econometric methods in accounting for risk, having larger 
negative mrb values compared to other methods. Using the Average Quadratic 
Loss (aql) criterion, the jsU methods were relatively poor in accuracy compared 
to the other methodologies, except the two-step jsU using the psei return series, 
which is more accurate compared to the RiskMetrics procedure. 

TABLE 6. Evaluation measures based on magnitudes

Model Joint JSU Two-step JSU

Time series RUSD REUR PSEi RUSD REUR PSEi

MRB -0.1317# -0.0960 -0.2157# -0.1061 -0.1289# -0.2077

AQL 0.0080* 0.0241* 0.0361* 0.0080* 0.0241* 0.0281

RKCORR 0.0386 -0.0621 0.1925 0.0641 -0.0638 0.2417*

AMRC 0.0197# 0.0462 0.0843 0.0205 0.0445 0.0819#

Model GARCH QMLE GARCH t

Time series RUSD REUR PSEi RUSD REUR PSEi

MRB 0.0111 0.0053 0.071 0.0938 0.0763 0.1595

AQL 0.0040 0.0161 0.0080# 0.0040 0.0080# 0.0080#

RKCORR 0.0805 -0.0386* 0.2122 0.0796 -0.0458 0.2125

AMRC 0.0231 0.0264# 0.0908 0.025 0.0472 0.0985

Model TARCH QMLE TARCH t

Time series RUSD REUR PSEi RUSD REUR PSEi

MRB 0.0558 0.0105 0.1043 0.1504* 0.0799* 0.1902*

AQL 0.0040 0.0161 0.0080# 0.0000# 0.0080# 0.0080#

RKCORR 0.0881* -0.1225 0.2308 0.0845 -0.0879 0.2245

AMRC 0.0240 0.0440 0.0933 0.0261* 0.0471 0.1007*

Model Historical quantile RiskMetrics

Time series RUSD REUR PSEi RUSD REUR PSEi

MRB -0.0283 0.1016 -0.0165 -0.0450 -0.0487 -0.0850

AQL 0.0080* 0.0120 0.0201 0.0040 0.0201 0.0321

RKCORR -0.0830# -0.0927 0.0320# 0.0656 -0.1308# 0.1145

AMRC 0.0227 0.0485 0.0923 0.0218 0.0519* 0.0979

 
Legend: * highest; #lowest

Using the efficiency-based rank correlation criterion (Spearman Rank 
Correlation), the historical quantile and RiskMetrics methods performed poorly 
in their ability to follow through the exposure of the financial asset, leading to 
inefficiently allocating appropriate risk capital based on their VaR estimates. The 
two-step jsU method performed better in terms of efficiency in allocating proper 
risk capital in the psei return series. qmle methods had better performance in 
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efficiency for rusd and reur return series. 
In assigning appropriate risk capital (Average Market Risk Capital), the two-

step jsU method allocates the lowest risk capital in rsgd and psei return series. 
The method is the most efficient for this evaluation procedure compared to 
other models in its ability to allocate appropriate capital. The lowest risk capital 
allocations for the rusd and reur return series are given by the joint jsU and 
garch qmle, respectively. The highest market risk capital allocations using 
the rusd and psei return series are computed using the tarch (t-distribution), 
while Riskmetrics method resulted in the highest market risk capital allocation 
for the reur return series.

6. Conclusions 

This paper introduced an alternative methodology of computing for Value-at-
Risk (VaR) using a time-varying conditional jsU density. The performance of this 
alternative procedure is compared with the existing methods of estimating VaR. 
The paper showed that jsU methods were relatively less conservative and less 
accurate in capturing appropriate risk levels, but the two-step jsU is more efficient 
in allocating proper risk capital for extreme losses compared to popular methods, 
such as the historical quantile and RiskMetrics. The results suggest the usefulness 
of the two-step jsU method in estimating VaR. This paper’s contribution is in 
the use of non-normal distributions in estimating VaR in asset portfolio. We 
hope this paper can stimulate other researchers to verify the performance of 
the jsU VaR using other series or to introduce other non-normal distributions in  
estimating VaR. 
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APPENDIX: Model Results

Model parameters
RUSD REUR PSEi

Coeff p-value Coeff p-value Coeff p-value
Joint JSU  

Sigma_2  

theta_1 31.1347 0.0000 16.0325 0.0000 -2.7734 0.3250

theta_2 83.1788 0.0000 15.4491 0.0370 12.6526 0.0010

theta_3 0.6850 0.0000 0.5705 0.0000 0.4033 0.0000

theta_0 -3.7118 0.0000 -4.3001 0.0000 -5.1818 0.0000

Gamma  

phi_1 -10.3608 0.0000 2.8237 0.0180 -3.2173 0.0000

phi_2 -4.7802 0.0400 0.2707 0.8740 -0.3899 0.6080

phi_3 -0.0012 0.9200 0.0009 0.9470 0.0161 0.1120

phi_0 0.0041 0.7060 -0.0100 0.4340 -0.0093 0.4310

Delta  

zeta_1 -4.1759 0.5330 -39.4274 0.2250 0.3816 0.9280

zeta_2 -2.8375 0.6860 10.8124 0.7870 3.5070 0.4940

zeta_3 -0.0973 0.0000 0.0073 0.9320 -0.0416 0.0000

zeta_0 1.8614 0.0000 2.0866 0.0000 1.4060 0.0000

Two-step JSU  

Gamma  

phi_1 -0.0773 0.0000 0.0161 0.0820 -0.0556 0.0000

phi_2 -0.0020 0.8890 0.0007 0.9640 -0.0037 0.7530

phi_3 0.0000 0.9970 0.0015 0.9090 0.0161 0.1320

phi_0 -0.0085 0.5410 -0.0074 0.5970 -0.0087 0.4770

Delta  

zeta_1 0.1633 0.3190 -0.0434 0.6430 -0.0602 0.2220

zeta_2 0.2140 0.2260 -0.0319 0.8060 0.0360 0.4780

zeta_3 -0.0898 0.0000 -0.0773 0.0000 -0.0335 0.0000

zeta_0 1.8096 0.0000 2.0547 0.0000 1.3717 0.0000

GARCH QMLE            

alpha_1 0.2239 0.0000 0.0647 0.0010 0.1153 0.0000

Beta 0.7925 0.0000 0.9312 0.0000 0.7425 0.0000

alpha_0 0.0000 0.0000 0.0000 0.1110 0.0000 0.0000

GARCH t            

alpha_1 0.2121 0.0000 0.0379 0.0000 0.1647 0.0000

Beta 0.7992 0.0000 0.9476 0.0000 0.7164 0.0000

alpha_0 0.0000 0.0000 0.0000 0.0020 0.0000 0.0000

Df 7.0380 0.0000 7.3951 0.0000 4.3797 0.0000

TARCH QMLE            

alpha_1 0.1888 0.0000 0.0533 0.0000 0.1261 0.0000

Psi 0.0391 0.0000 0.0460 0.0000 -0.0687 0.0000

Beta 0.8150 0.0000 0.9277 0.0000 0.8238 0.0000

alpha_0 0.0001 0.0000 0.0001 0.0000 0.0016 0.0000

TARCH t            

alpha_1 0.1690 0.0000 0.0402 0.0000 0.1750 0.0000

Psi 0.0257 0.0980 0.0173 0.0610 -0.0639 0.0030

Beta 0.8393 0.0000 0.9502 0.0000 0.7973 0.0000

alpha_0 0.0001 0.0000 0.0001 0.0030 0.0014 0.0000

Df 6.3864 0.0000 7.4785 0.0000 4.3345 0.0000


