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This study uses an Error Correction Model (ECM) to forecast residential 
electricity demand in the Philippines using household final consumption 
expenditure, residential electricity price, and temperature as explanatory 
variables. Results show that there is a long-run relationship between 
household final consumption expenditure and residential electricity demand. 
Estimates from the ECM are consistent with economic theory, and the 
model passed standard diagnostic and parameter stability tests. Forecast 
performance based on within-sample and out-of-sample forecasts of the 
ECM is also shown to be superior, relative to a benchmark Autoregressive 
Distributed Lag (ARDL) model. Simulations show that by 2040, residential 
electricity consumption will range from 42,500 gigawatthours (GWh) based 
on a weak income growth scenario and 62,000 GWh based on a combined 
changes scenario.
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1. Introduction	

Philippine households face the highest electricity cost in the Southeast Asian 
region [Ravago et al. 2016]. Policy discussion has focused on how prices can be 
brought down over time. Increasing generation capacity, especially those of low-
cost fuel sources, is among the widely discussed proposal, but this approach must 
be pursued with demand targets in mind to ensure the right amount of investments 
in generation capacity. At the same time, meeting the emission targets must also 
be considered in decisions concerning the expansion of generation capacity 
especially that low-cost fuels tend to emit larger amounts of greenhouse gases. 
With all these considerations, long-run projections of total electricity consumption 
are critical to making the best policy choices to ensure reliable, consistent, 
and clean use of electricity. This paper contributes to the policy dialogue on 
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generation capacity expansion by analyzing the relationships between key 
aggregate indicators with household electricity consumption using cointegration 
techniques, and by forecasting the growth of household electricity demand in the 
near future based on the estimated short- and long-run elasticities. It extends the 
work of Danao and Ducanes [2016] who used the same cointegration technique 
but forecasted aggregate electricity consumption rather than the consumption of a 
specific customer class as done in this paper. 

Forecasting aggregate electricity demand would more directly guide policy 
discussion on generation capacity and fuel mix. However, forecasts based on 
aggregated heterogeneous goods strongly assume similarity in determinants and 
size of elasticities among specific components. In forecasting aggregate electricity 
demand, this is a practical concern, especially in estimating the elasticities of 
climactic variables. For instance, Alabbas & Nyangon [2016] found that in 
responsiveness to weather changes, industrial customers are not as sensitive as 
residential customers. By analyzing the behavior of a specific customer class, 
a more appropriate set of predictors can be used and ultimately, result in better 
forecasting performance.

This paper has two goals: first, to estimate how residential electricity 
consumption responds to changes in household income, prices, and temperature 
using an error correction model (ECM); and second, to use these estimates to 
forecast residential electricity demand growth under various economic and 
climatic scenarios. Two time-series models were compared in terms of prediction 
error: a simple Autoregressive Distributed Lag Model (ARDL) and an ECM. Both 
models stood to have relatively low forecast errors despite the limited sample size. 
But the ECM has a superior forecasting performance and thus, it is used to forecast 
long-run residential electricity demand growth under varying assumptions. 

Estimates using the ECM show that residential electricity demand is influenced 
by short-run price and temperature changes. Household income, proxied by real 
household final consumption expenditure, is found to be insignificant in the short 
run, but a cointegration test suggests that it has a long-run equilibrium relationship 
with residential electricity demand. Based on the simulations, residential 
electricity consumption will range from 42,500 gigawatt hours (GWh) to 61,942 
GWh by 2040 depending on the scenarios assumed. 

This paper is organized as follows: Section 3 describes how residential 
electricity demand changed over time using data reported by the Department of 
Energy. Section 3 discusses the movement of household electricity demand and 
its predictors over time. Section 4 describes the data and methodology used in the 
empirical analysis. Section 5 discusses the estimation results. Section 6 presents 
the demand forecasts until 2040 under different forecast scenarios. And lastly, 
Section 7 concludes.
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2. Review of related literature

There is a wide literature that analyzed residential electricity demand 
using data from developed countries. The studies can be grouped broadly into 
two based on the type of data used. One group of studies used household data 
to analyze household electricity demand using distribution utility prices and 
reported household income that commonly used a double-log functional form 
(e.g., Filippini and Pachauri [2004]; Yohanis et al. [2008]). The other group 
of studies used time series aggregate data, typically expressing residential 
electricity demand as a function of electricity prices, real incomes (real gross 
domestic product or real private consumption], and weather conditions. In this 
group, a common approach is to use an Error Correction Model (e.g., Dilaver 
and Hunt [2011]; Jamil and Ahmad [2011]; Zachariadis and Pashourtidou [2007]; 
Halicioglu [2007]; Hondroyiannis [2004]).  

Jorgensen and Joutz [2012] analyzed residential electricity demand for the 
US Mountain Region using an Error Correction Model. The estimates were used 
to perform two simulations: one is to examine the impact of a ten-percent price 
increase and the other is to address the effect of an increase in temperature by two 
degrees Fahrenheit. Explanatory variables used were the real price of electricity, 
price of natural gas, real personal income per household, and heating and cooling 
degree-days. Their results show that residential electricity demand is inelastic 
with respect to price and income in the short run. Meanwhile, weather variables 
appear as a strong driver of short-run demand. 

Donatos and Mergos [1991] estimated per capita residential electricity demand 
in Greece using a single equation model with ridge regression to overcome the 
presence of strong multicollinearity. Per capita residential electricity consumption 
is expressed as a function of private disposable income, the average price of 
electricity, the weighted average of heating degree days, the average price of 
LPG, the sales of electrical appliances, the number of consumers, and the average 
price of diesel. They also found that residential electricity demand is inelastic 
with respect to price and income, with elasticities of -0.21 and 0.53, respectively. 
However, they did not find a significant impact of heating degree days since diesel 
oil is the main energy source for space heating.

Zachariadis and Pashourtidou [2006] examined residential and commercial 
electricity consumption for Cyprus using an Error Correction Model. Electricity 
demand is expressed as a function of the lag of income and price, total degree 
days, and the lag of electricity demand. The error correction term included a 
dummy variable for the 1974-1975 period to remove the outliers in the series. 
They found price and income to be insignificant in the short run, and that weather 
fluctuation has the strongest impact on residential electricity demand. 

Hondroyiannis [2004] also used an Error Correction Model to examine how 
residential electricity demand in Greece is affected by the real price of electricity, 
real income, population, and the weighted average temperature. Demand is found 
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to be income inelastic and unaffected by price and temperature. They also found 
that residential electricity demand is not characterized by a structural shift under 
the period of investigation, thus suggesting that the series is stable and useful for 
policy purposes. 

In the Philippines, there are a few studies that analyzed how electricity demand 
is affected by various economic and climatic factors. Danao [2001] estimated a 
short-run model for residential electricity demand in rural areas. After households 
are partitioned based on their appliance portfolio, demand is estimated for each 
group as a function of price, annual household expenditure, and household 
characteristics. Weather variables are not included in the model, like in many 
studies on electricity demand based on cross-sectional data. His results show that 
demand is inelastic with respect to both price and income. 

Meanwhile, Danao and Ducanes [2016] used an Error Correction Model 
to analyze aggregate electricity demand. They used real price, real GDP, and 
average temperature as explanatory variables. Their results show that aggregate 
electricity demand has an income elasticity of 0.94, a price elasticity of -0.13, and 
a temperature elasticity of 1.42. The model performed well in both within-sample 
and out-of-sample forecasts with a mean absolute percentage error of 1.47 percent 
and 0.97 percent, respectively. The estimates were then used to perform various 
simulations for the forecast horizon 2015-2030. By 2030, forecasts of aggregate 
electricity demand range from 120,000 GWh based on a five percent GDP growth 
scenario to 150,000 GWh based on a scenario with a seven percent GDP growth, 
decline in electricity prices by one percent, and increase in temperature by 0.05. 

This work adopts the study of Danao and Ducanes [2016] by analyzing the 
relationship of residential electricity demand with real household income, real price, 
and temperature using an ECM.  It extends the work of Danao [2001] by also analyzing 
residential electricity demand but using time series data, and by incorporating the 
effect of weather changes on short-run residential electricity demand.

3. Residential electricity demand over time

Residential demand for electricity in the Philippines has grown significantly 
over time. Figure 1 plots the upward movement of residential electricity demand 
across time. It registered an annual growth of 5.8 percent and expanded six 
folds from 1982 to 2015. It grew faster than commercial or industrial electricity 
demand, which grew at a rate of 5.7 percent and 3.3 percent, respectively. 
Residential customers form the largest group of electricity users in 2015, covering 
27.6 percent of total electricity demand.
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FIGURE 1. Residential electricity demand from 1982 to 2015
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Source: Philippine Power Statistics, Department of Energy (DOE)

In the 1980s, demand grew at a slow rate as economic and political crises 
affected the power industry. A sharp depreciation of the peso made foreign 
obligations difficult to settle causing the projects of the National Power 
Corporation (NPC) to be put on hold. Financial difficulties faced by the NPC also 
dragged down its operational performance. Frequent load shedding occurred 
between 1983 and 1986 due to power system failures in the Luzon grid. While 
economic conditions in the 1980s improved, demand for electricity was barely 
matched by sufficient capacity as NPC’s financial difficulties remained.

FIGURE 2. Customer shares to total electricity demand from 1982 to 2015
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Growth in demand in the late 1980s was disrupted by a power crisis in the early 
1990s. From 1990-1993, demand slowed down as the country faced 103 blackout 
days for an annual duration of 1,273 hours, equivalent to 251 GW of lost energy 
sales [World Bank 2003]. No new generation capacity was added in the late 1980s 
given the poor financial position of NPC and the expectations that Bataan Nuclear 
Power Plant would begin operations in 1984 to meet demand [Cham 2007]. Also, 
some plants are too old to produce at their installed capacity: available capacity 
in the Luzon grid ranged from 2,300 to 3,100 MW while installed capacity was 
4,321 MW.

From 1994 to 1996, demand grew at a fast rate as the government adopted 
measures to expedite the creation of new generation capacity. In response to the 
crisis, the government passed the Power Crisis Act of 1993, which allowed the 
NPC to enter into “fast-track” contracts with the Independent Power Producers 
(IPPs) to speed up growth in generation capacity. NPC achieved a relatively stable 
financial position while MERALCO, the largest power distribution utility, returned 
to profitability. By 1996, the power sector returned to normal [Cham 2007]. Peak 
demand in Luzon was at 4,600 MW, while available capacity was in excess of 
5,100 MW.  Efforts also led to improvement in the electrification rate, which rose 
to 70 percent by 1996, but rural electrification remained problematic. With excess 
capacity, load shedding was less frequent and demand became more responsive to 
changes in economic conditions. 

From 1997 to 2015, the NPC again suffered financial difficulties but available 
capacity remained sufficient to cover demand. The Asian Financial Crisis 
in 1997 led to a sharp depreciation of the peso that significantly increased the 
value of NPC’s US Dollar-denominated loans, bringing back the NPC to a poor 
financial situation. On the other hand, the IPPs were not much affected by the 
Asian Financial Crisis because of the “take-or-pay” clauses in their contracts with 
NPC [Cham 2007]. In 2001, the government passed the Electric Power Industry 
Reform Act (EPIRA) which introduced changes in the structure of the power sector 
and privatized the assets of the NPC. On the demand side, the EPIRA strengthened 
the responsibility of the Small Power Utilities Group (SPUG) by connecting 
missionary areas to the grid [Navarro et al. 2016]. From 2000 to 2012, access to 
electricity in rural areas grew from 52 percent to 82 percent, as shown in Figure 3. 
This helped expand overall electrification from 71 percent to 88 percent over the 
same period. 
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FIGURE 3: Electrification rates over time: total, urban and rural

Urban

Philippines

Rural

Year

1990

50

60

70

80

90

2000 2010 2012

%
 o

f p
op

ul
at

io
n 

w
ith

 a
cc

es
s 

to
 e

le
ct

ric
ity

Source: World Bank, Sustainable Energy for All Database

4. Theoretical framework

Electricity demand is a derived demand. Consumers do not demand electricity 
in itself, but as an input in the production of electrical services, such as cooling, 
heating, lighting, and cooking. These services are produced only by supplying 
electrical power to an electric device. Without electricity, an electric device alone 
cannot produce an electrical service. And conversely, a consumer without any 
electric device but only electricity cannot produce an electrical service. 

Jorgensen and Joutz [2012] grouped these electrical services into two. One 
group represents demand for daily use such as lighting, refrigeration, cleaning, 
and entertainment, while the other represents seasonal weather needs, such as 
cooling and heating. Price and income generally affect demand across electrical 
services, while weather conditions mostly affect demand for cooling and heating. 

The reduced-form model for residential electricity consumption is formulated 
as follows:

elec=f(price,income,temperature)  	

where elec is residential electricity consumption, price is residential electricity 
price, income is household income, and temperature is annual temperature.

From consumer optimization theory, a demand for a good is influenced by 
the price of the good and the consumer’s income. Assuming electricity demand 
is a normal good, higher electricity prices reduce demand for electrical service, 
and also, the demand for electricity. Meanwhile, the higher the income of the 
household, the higher is the demand for electricity and electrical services. The 
scale at which these variables can influence demand depends on the elasticity of 
demand with respect to these variables. 
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The elasticity of demand with respect to price or income is generally different 
in the long-run and the short-run. The long-run elasticity of demand is likely to 
be higher than the short-run elasticity. In the short run, a consumer has a fixed 
stock of appliances or electric devices that he/she can use to produce an electrical 
service, and thus, he/she has little room for adjustment in the event of a price or 
income shock. 

A weather variable is also included to capture the effect of the need for 
electricity. In this study, the temperature is used as a weather variable1. The higher 
the temperature, the higher is the demand for cooling, and thus, the higher the 
demand for electricity. In the case of countries that experience hot summers and 
cold winters, the temperature does not have a purely positive relationship with 
demand. In hot summers, demand for electricity comes from cooling, while 
in cold winters, demand for electricity comes from heating. In the case of the 
Philippines that does not experience extremely cold weather conditions, the 
demand for electricity is expected to be positively related to temperature.

5. Data description and methodology

5.1. Data description

The dataset covers 23 annual observations (1993 – 2015) gathered from 
various sources. The original dataset covers data from 1973 to 2015 but the 
analysis is limited to more recent observations to avoid the issue of parameter 
instability, which reduces the forecasting performance of a given model [Pesaran 
and Timmermann 2002]. For instance, demand from the 1980s and the early 1990s 
was affected by poor power supply conditions that commonly resulted in load 
shedding. Since these conditions are no longer the same today, these observations 
are removed in the analysis to understand the impact of price, income, and 
temperature more clearly on residential electricity demand.  

Residential electricity demand is measured in GWh per year. Data is taken 
from the Philippine Power Statistics of the Department of Energy (DOE). The 
Philippine Power Statistics is an annual statistical report containing disaggregated 
demand for electricity from areas on-grid and off-grid, total power generation 
mix, and peak demand per major island group.  Figure 4.1 shows that residential 
electricity demand has been growing over time at a rate of 5.96 percent throughout 
the sample period (1993-2015). From 1993 to 1996, residential electricity demand 
grew at a faster rate of 12.84 percent as the government expedited measures to 
increase generation capacity.

1 Some studies used number of heating degreee days as a weather variable (e.g., Donatos and Mergos 
[1991]; Hondroyiannis [2004]; Dergiades and Tsouldifis [2008])
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FIGURE 4.1. Residential electricity demand (1993-2015)
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 Real residential electricity price2 is the average annual price per kWh charged 
by MERALCO to its residential customers. An ideal price data is the average 
residential electricity price charged by various distribution utilities weighted by 
their corresponding market shares, but electricity sales of smaller distribution 
utilities and electric cooperatives are not complete. On the other hand, MERALCO 
is a leader in the power distribution sector with a market share of around 55 percent 
to 60 percent of residential electricity demand in the country [Danao and Ducanes 
2016]. Real residential electricity prices grew at an average of 0.59 percent per 
year from 1993 to 2015. Figure 4.2 shows how real residential electricity prices 
move throughout the sample period.

FIGURE 4.2. Residential electricity price, constant (2000=100), (1993-2015)
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2 Deflated using GDP deflator (2000=100), following Danao and Ducanes [2016]. 
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Real household final consumption expenditure (2000=100) is gathered from 
the Philippine Statistical Authority. As shown in Figure 4.3, it has grown steadily 
over time at an average annual rate of 4.61 percent throughout the sample period. 
Growth has been faster at around six percent from 2010- 2015. 

FIGURE 4.3. Household final consumption expenditure, constant (2000=100), 
(1993-2015)
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Annual temperature (in degrees Celsius) is collected from the University of 
East Anglia Climate Research Unit (CRU). The data is calculated by taking the 
simple mean of monthly average land temperatures in a given year. Figure 4.4 
shows that annual average prices have been fluctuating throughout the sample 
period and do not display a clear trend. The average temperature is 26.27 degrees 
Celsius throughout the sample period as shown in Table 1, along with other 
summary statistics.

   FIGURE 4.4. Annual average temperature (1993-2015)
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        Source: University of East Anglia, Climate Research Unit
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TABLE 1. Summary statistics

Variable Description Mean Std. Dev. Min Max

hhcons Residential electricity consumption 14,812 4,535 6,368 22,747

real_price MERALCO residential electricity prices 5.49 0.83 4.34 6.66

hhfe Household final consumption expenditure 3,254,644 994,482 1,954,322 5,266,632

temp Temperature (in Celcius) 26.27 0.17 26 26.80

ln_cons log of residential electricity consumption 9.55 0.35 8.76 10.03

ln_price log of MERALCO residential electricity prices 1.69 0.15 1.47 1.90

ln_temp log of temperature (in Celcius) 3.27 0.01 3.26 3.29

ln_hhfe
log of household final consumption 
expenditure

14.95 0.31 14.49 15.48

Source: Author’s calculations

5.2. Methodology

Among electricity demand studies that used time series models, cointegration 
models were commonly used. When the variables are cointegrated, the OLS 
estimator is super-consistent and allows the estimate to converge to its true value 
at a faster rate [Stock 1997]. Cointegration models establish the existence of a 
long-run equilibrium relationship tying the individual variables and therefore, 
“imposing this information can produce substantial improvements in forecasts 
over long horizons” [Stock 1997]. However, cointegration models may be 
used only if the variables are found to be cointegrated. If the variables are not 
cointegrated, a common resort is to use an ARDL model that expresses the 
dependent variable as a function of the explanatory variables, their respective 
lags, and, the lags of the dependent variable. 

A common approach to test for cointegration is the Engle-Granger [1987] 
two-step procedure. It tests for cointegration by determining whether the linear 
combination of non-stationary variables is stationary.  This approach entails two 
simple steps. The first step is to predict the residual using a standard OLS on a 
chosen long-run equation.  The second step is to determine whether the predicted 
residual is stationary using unit root tests3. 

If the variables are found to be cointegrated, the ECM can be used. This model 
involves estimating the lag of the residual from the long-run equation. This lagged 
residual is also known as the error correction term. The coefficient of the error 
correction term must be negative to indicate that a positive short-run deviation 
would be corrected by a movement back towards the long-run equilibrium. The 
larger the coefficient, in absolute terms, the faster the dependent variable moves 
back to the long-run equilibrium after a short-run deviation.  

3 Common unit root tests are Dickey-Fuller test and the Philips-Perron test 
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Algebraically, the Error Correction Model can be derived from an ARDL 
equation. For example, consider the following simple ARDL model: 

0 1 2 1 3 1t t t t tY x x y uβ β β β− −= + + + + (1)

wherein the equation ty  is the log of residential electricity demand, expressed as 
a linear function of the log of household income, 1tx − its lags, 1tx − , and the lag of the 
dependent variable, 1ty − . For stability, the condition 3β| | <1  is imposed.

The variables would reach a long-run equilibrium characterized as follows:

1t ty y −= (2)

t tx x (3) 

Plugging in these long-run equilibrium values (Equations (2) and (3) into the 
ARDL equation (Equation 1), the long-run demand equation is derived as follows:

( ) ( ) ( ) ( )0 3 1 2 3 31 1 1t t ty x uβ − β β β − β − β= + + + (4)

In equation 4, the long-run elasticity of demand with respect to 1tx − is  
( ) ( )1 2 31β β − β+ .

Letting ( )31t te u − β= , Equation (4) can be rewritten as:

( ) ( ) ( )0 3 1 2 31 1t t ty x eβ − β β β − β= + + + (5)

Subtracting 1ty −  from both sides of Equation (5):

( ) ( ) ( )0 3 1 1 2 31 1t t t ty y x eβ − β β β − β−∆ = − + + + (6)

Adding and subtracting  in the right-hand side would derive the ECM:

( ) ( )0 1 3 1 1 2 1 3(1 ) 1t t t t ty x y x eβ β β β β − β− − ∆ = + ∆ − − − + +  (7)

In equation (7), the short-run elasticity of demand with respect to 1tx − is 
measured by the coefficient, ( ) ( )3 1 1 2 1 3(1 ) 1t ty xβ β β − β− − − − + . The term ( ) ( )3 1 1 2 1 3(1 ) 1t ty xβ β β − β− − − − +  
is the error correction term that adjusts short-run demand towards the long-run 
equilibrium relationship following a short-run deviation. The coefficient ( ) ( )3 1 1 2 1 3(1 ) 1t ty xβ β β − β− − − − +  
measures the speed of adjustment. 
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6. Estimation results 

The set of analyses below involves four steps. First, the order of integration 
of each variable is determined using different unit root tests, including the 
Augmented Dickey-Fuller Test, along with two other efficiency tests developed 
by Elliott, Rothenberg, and Stock [1996]. Second, a long-run equation is specified 
and an Engle-Granger test is used to determine the presence of a cointegrating 
relationship. Third, a test of weak exogeneity is conducted to determine 
whether a feedback mechanism exists that would necessitate the use of a Vector 
Autoregression (VAR) model rather than a single equation model [Enders 2015]. 
And lastly, an ECM equation is estimated, and standard diagnostic and parameter 
stability tests are conducted.

6.1. Orders of integration

A regression involving variables with different orders of integration may yield 
spurious results unless these variables are cointegrated. Hence, it is important to 
determine the order of integration of each variable using unit-root tests, of which, 
the most common is the Augmented Dickey-Fuller (ADF) Test. The ADF tests the 
null hypothesis that the series has a unit root, or integrated of order 1, or more. If 
a series has a unit root in levels but not in the first difference, then the variable is 
said to exhibit an I(1) process. If a series in levels does not have a unit root, the 
variable is said to exhibit an I(0) process. Alternatively, the order of integration 
can be determined visually using a correlogram. A correlogram shows how the 
variable is correlated with its own lags. A correlogram that shows a declining 
pattern strongly suggests non-stationarity or the presence of unit roots. 

An alternative to the two-unit root tests above is taken from a family of 
efficient tests developed by Elliott, Rothenberg, and Stock (ERS) [1996] whose 
modifications improved test performance relative to an ordinary Dickey-Fuller 
test for series characterized with small sample size. Among the family of tests is 
the feasible point optimal test whose asymptotic power function is tangent to the 
power envelope and never far below it. A specification of this test that detrends 
series with intercept and trend is used as a comparison for the ADF Test. Also 
used is another test within the same family called the Dickey-Fuller Generalized 
Least Squares (DF-GLS), which modifies the ordinary Dickey-Fuller Test by 
transforming the series via a generalized least squares regression [ERS 1996]. 

Results of the ADF tests (see Table 2.1) show that the variables have different 
orders of integration: the log of residential electricity demand (ln_cons), the log 
of real price (ln_price), and the log of household final consumption expenditure 
(ln_hhfe) are I(1), while the log of temperature is I(0). Likewise, a visual analysis 
of the correlograms for these same variables (see Figures 5.1-5.8) agrees with 
the results of the ADF tests. These tests are then compared with the results of the 
feasible point optimal tests and DF-GLS tests. Results of the ADF tests are not 
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entirely different from those of the ADF tests with the exception of the log of 
residential electricity consumption variable wherein the presence of a unit root 
cannot be rejected. However, as the DF-GLS agrees with the ADF tests in indicating 
a unit root process for the log of residential electricity consumption, the first 
differences are used in the short-run estimations below.

TABLE 2.1. Results of the ADF and Elliott, Rothenberg, and Stock (ERS) tests

ADF Test statistics Feasible Optimal Test 
[ERS 1996] Test Statistics

DF-GLS [ERS 1996]
Test Statistics

Variable Description in log-
levels

in 1st 
difference

in log-
levels

in 1st 
difference

in log-
levels

in 1st 
difference

ln_cons Residential electricity 
consumption

-2.183 -3.468*** 82.257 10.713 -1.417 -4.16***

ln_price Residential electricity price -1.393 -4.413*** 9.755 6.555* -1.955 -4.609***

ln_hhfe Household consumption 
expenditure

2.209 -4.578*** 4.70** 6.432* -3.253** -2.5

ln_temp Temperature -4.129*** -3.677*** 4.07*** 2.391*** -2.259 -3.15**

Source: Author’s calculations
***p<0.01, **p<0.05, *p<0.10

TABLE 2.2. Lag specifications for the ADF and ERS tests

ADF Test statistics Feasible Optimal Test 
[ERS 1996] Test Statistics

DF-GLS [ERS 1996]
Test Statistics

Variable Description in log-
levels

in 1st 
difference

in log-
levels

in 1st difference in log-
levels

in 1st 
difference

ln_cons Residential electricity 
consumption

2 0 4 4 4 0

ln_price Residential electricity price 0 0 2 2 2 0

ln_hhfe Household consumption 
expenditure

0 7 4 4 4 0

ln_temp Temperature 0 2 4 4 4 4

Source: Author’s calculations

FIGURE 5.1. Correlogram of ln_cons

Source: Author’s calculations 
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FIGURE 5.2. Correlogram of D.ln_cons

Source: Author’s calculations

FIGURE 5.3. Correlogram of ln_price

Source: Author’s calculations

FIGURE 5.4. Correlogram of D.ln_price

Source: Author’s calculations
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FIGURE 5.5. Correlogram of ln_hhfe

Source: Author’s calculations

FIGURE 5.6. Correlogram of D.ln_hhfe

Source: Author’s calculations

FIGURE 5.7. Correlogram of ln_temp

Source: Author’s calculations
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FIGURE 5.8. Correlogram of D.ln_temp

Source: Author’s calculations

6.2. Granger Causality Test

This part of the analysis aims to understand whether bidirectional feedback 
exists between household expenditures and residential electricity consumption. 
Some studies have found that a bidirectional causality exists between economic 
growth and aggregate electricity consumption (e.g., Odhiambo [2009]; Bayar & 
Ozel [2014]). To determine whether such a feedback mechanism exists, a Granger 
causality test is used. If an F-test shows that a dependent variable can be explained 
by an autoregressive lagged specification of both the dependent and independent 
variables, then the independent variable is said to Granger-cause the dependent 
variable [Granger 1969]. A feedback mechanism exists if household expenditures 
Granger-cause residential electricity consumption, and vice versa. 

The resulting F-tests of the model with lags of 4 are shown in Table 3 below. 
The resulting F-test is significant at the one percent significance level for the 
autoregressive model with the residential electricity consumption as the dependent 
variable; thus, suggesting that household expenditures Granger-causes residential 
electricity consumption. However, the reverse is not true as the lags of residential 
electricity consumption do not explain household expenditures. One important 
implication of this result is that estimating the long-run equation for the log of 
residential electricity consumption is unlikely to suffer from endogeneity bias. 

TABLE 3. Results of the Granger causality test

Equation Explanatory variable F-statistic

ln_cons ln_hhfe 23.05***

ln_hhfe ln_cons 1.66

***p<0.01

Source: Author’s calculations
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6.3. Test for cointegration

The Engle-Granger test is used to determine whether the variables ln_cons 
and ln_hhfe are cointegrated. The graphs of the logs of residential electricity 
demand and household final consumption expenditure exhibit strong co-
movement throughout the sample period (1993-2015) with a correlation of 95 
percent, suggesting that these variables may be cointegrated. Equation 8 shows a 
model that includes a dummy variable, dum1996 to account for the change in the 
movement of residential electricity demand as the power supply situation returned 
to normal in 1996 following the government responses to the power crisis in 
1993 [Cham 2007]. Equation (8) below is estimated using OLS, then the residual 
is tested for stationarity based on Engle-Granger test statistics. OLS results for 
Equation (8) are found in Table 4 below.

0 1 2_ _ 1996t t tln cons ln hhfe dum u= α + α + α + (8)

where:	 0 1 2_ _ 1996t t tln cons ln hhfe dum u= α + α + α + is the logarithm of residential electricity consumption,
	 0 1 2_ _ 1996t t tln cons ln hhfe dum u= α + α + α + is the logarithm of household final consumption expenditure in 

2000 prices,
	0 1 2_ _ 1996t t tln cons ln hhfe dum u= α + α + α + takes the value 1 if the year is 1996 or above, and 0, otherwise. 

TABLE 4. OLS results of the long-run model (Equation 8)

(1)
VARIABLES ln_cons
ln_hhfe 0.878***

(0.0502)
dum1996 0.320***

(0.0445)
Constant -3.850***

(0.729)
Observations 23
R-squared 0.974

Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
Source: Author’s calculations

The results of the Engle-Granger test (see Table 5) support the hypothesis that 
residential electricity consumption and household final consumption expenditure 
have a long-run relationship. The Engle-Granger test statistic is -4.61, rejecting 
the null hypothesis of no cointegration at the five percent level of significance. 

TABLE 5. Result of the Engle-Granger Test

Critical Values

Test statistic 1 percent 5 percent 10 percent

-4.612 -5.014 -4.15 -3.742

Source: Author’s calculations
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Since the variables _ tln hhfe  and _ tln cons  are cointegrated, an ECM can be used 
to analyze relationships of price and income with residential electricity demand. 
Instead of a two-step ECM, which involves predicting the residual and using the 
predicted lag of the residual (i.e., 1tu − ) as part of the short-run ARDL model, the one-
step ECM is used such as the one shown in Equation (9) below. The latter estimates 
include the lag of the cointegrated variables: 1_ tln cons −  and 1_ tln hhfe −  in lieu of 

1tu − . While unit root tests suggest that ln_temp is I(0), it is expressed in the first 
differences in the ECM for a more direct interpretation of its coefficient. 

1 2 1 3

4 1 5 1

_ _ _ _
_ _

t t t t

t t t

ln cons ln hhfe ln price ln temp
ln hhfe ln cons e

β β β
β β

−

− −

∆ = ∆ + ∆ + ∆ +

+ +
(9)
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6.4. Test of weak exogeneity

In a single-equation ECM, it is important that the cointegrating vector is unique4 
and the explanatory right-hand side variables are weakly exogenous [Harris 1995]. 
A variable is said to be weakly exogenous if its marginal distribution contains 
no useful information for conducting inference on a parameter set (Engle et al. 
[1983]; Enders (2015)]. If the variables are weakly exogenous, a single-equation 
ECM (as shown in Equation (9)) can be used to analyze relationships. Each of the 
variables used in the right-hand side of the short-run model is regressed on the 
lagged residual, and then, a t-test is performed on the variable, 1tu − . Results (see 
Table 6) show that none of the variables is significant at the five percent level, 
suggesting that the variables are weakly exogenous. This satisfies the requirement 
of Harris [1995] in the use of single-equation ECM.

Table 6. Results of the test of weak exogeneity

Test of weak exogeneity D.ln_hhfe D.L.ln_price D.ln_temp

L.uhat 0.03 0.35 0.04

p-value 0.14 0.07 0.32

Source: Author’s calculations

4 By definition, a single explanatory variable in the long-run model means that the cointegrating vector is 
already unique. 
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6.5. Results of the ECM and the ARDL

Estimates of the ECM are consistent with economic theory (see Table 7, model 1) 
and passed standard diagnostic tests (see Table 8, model 1). The first column of Table 
6 shows the estimates using the ECM. First, price and household final consumption 
expenditure have a negative and a positive effect on household electricity demand, 
respectively. Estimated short-run price elasticity is -0.26, while short-run income 
elasticity is 0.75, although not significant at the ten percent level. Second, the 
estimated long-run elasticity5 is 1.75, higher than the short-run elasticity estimate. This 
suggests that households do not immediately adjust to income shocks until they are 
able to adjust appliance stock in the long-run. Third, the temperature has an elasticity 
of 2.2 indicates that demand is highly elastic with respect to changes in temperature. 
High-temperature levels trigger households to use cooling appliances, such as an air 
conditioner, which typically consumes a large amount of electricity. The model also 
passed the parameter stability test, as the graph of the CUSUM-squared test (see Figure 
6.1) is within five percent bandwidth of significance.

TABLE 7. Results of the ECM and the ARDL

(ECM) (ARDL)

VARIABLES D.ln_cons D.ln_cons

D.ln_hhfe 0.754 -0.582

(0.438) (0.764)

LD.ln_price -0.264*** -0.329***

(0.0570) (0.102)

D.ln_temp 2.206*** 2.587***

(0.456) (0.878)

L.ln_cons -0.206***

(0.0517)

L.ln_hhfe 0.118**

(0.0540)

Constant 0.237 0.0847**

(0.361) (0.0356)

Observations 21 21

R-squared 0.893 0.545

Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
Source: Author’s calculations

5 Long-run income elasticity is calculated by dividing the coefficient of L.ln_cons by the coefficient of 
L.ln_hhfe. This calculation is based on Equation (7) in the Theoretical Framework. 
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TABLE 8. Standard diagnostic test results (p-values)

Diagnostic tests Model 1 (ECM) Model 2 (ARDL)

RAMSEY Reset Test 0.961 0.560

Test for Heteroskedasticity 0.441 0.099

Breusch-Godfrey Test for serial correlation 0.241 0.025

Jarque-Bera normality test 0.260 0.260

Source: Author’s calculations

For comparison, the following ARDL model (Equation (10)) is also estimated:
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Results for the ARDL are found in the second column of Table 7. The only 
difference of the ARDL model from the ECM is the exclusion of the error 
correction term. The price elasticity is -0.33 and the temperature elasticity is 2.59. 
On the other hand, income elasticity is not significantly different from zero and 
has a negative sign, a result also found by Jorgensen and Joutz [2012]. The model 
generally passed standard diagnostic tests (see Table 8, model 2), except for the 
Breusch-Godfrey test indicating the presence of serial correlation. Also, the graph 
of the CUSUM-squared test (see Figure 6.2) is within the five percent bandwidth, 
which means the parameters are stable.

FIGURE 6.1. Parameter stability test for ECM (CUSUM Test)

C
U

S
U

M
 s

q
ua

re
d

year

 CUSUM squared

2002 2015

0

1

Source: Author’s calculations



142	 Santos: Forecasting residential electricity demand in the Philippines

FIGURE 6.2. Parameter stability test for ARDL (CUSUM Test)
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6.6. Forecasting performance

The forecast accuracy of the two models is compared using the Mean Absolute 
Percentage Error (MAPE) of both in-sample and out-of-sample forecasts, with a 
hold-out period from 2012 to 2015. The MAPE is calculated by taking the absolute 
value of the difference between the actual and forecast values as a fraction of the 
actual value. The forecasting performance of the ECM is superior to that of the 
simple ARDL. For the ECM, the out-of-sample MAPE is 6.32 percent while the 
within-sample MAPE is 1.13 percent. In contrast, for the ARDL model, the out-
of-sample and within-sample MAPEs are higher at 2.38 percent and 9.19 percent, 
respectively. The graphs comparing actual and forecasted values for residential 
electricity consumption for the estimated period are shown in Figure 7.1 for ECM 
and Figure 7.3 for ARDL. The graphs of the out-of-sample forecasts for ECM are 
in Figure 7.2 and for ARDL in Figure 7.4. 

TABLE 9. Mean absolute percentage error of estimates from ECM and ARDL

ECM: Mean Absolute Percentage Error (MAPE)

in-sample 1.13 percent

out-of-sample 6.32  percent

ARDL: Mean Absolute Percentage Error (MAPE)

in-sample 2.38 percent

out-of-sample 9.19 percent

Source: Author’s calculations
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FIGURE 7.1. Comparison of actual and within-sample forecasts using ECM
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FIGURE 7.2. Comparison of actual and out-of-sample forecasts using ECM
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FIGURE 7.3. Comparison of actual and within-sample forecasts using the ARDL
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FIGURE 7.4. Comparison of actual and out-of-sample forecasts using the ARDL
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7. Scenario analysis 

The Error Correction Model is used to forecast residential electricity demand 
from 2016 to 2040. The ECM has a better forecasting performance than the 
alternative short-run ARDL model, it passed standard diagnostic and parameter 
stability tests, and has elasticity estimates consistent with economic theory. 

There are six scenarios used to forecast long-term residential electricity 
demand, as adopted from the scenarios used by Danao and Ducanes [2016].  
All the scenarios assume a GDP growth rate of six percent per year. The first 
three scenarios assume different growth rates for household final consumption 
expenditures HHFE while assuming that the other explanatory variables follow 
historical trends, i.e., the predicted values using the time variable as a regressor. 
The three scenarios are the following: (1) the baseline scenario wherein HHFE 
grows at an annual rate of six percent (also the average growth from 2011-
2015); (2) the strong growth scenario wherein HHFE grows at an annual rate of 
seven percent; (3) the weak growth scenario or non-consumption-driven growth 
wherein real GDP growth of six percent is driven by growth of total real GDP 
less real household final consumption expenditure (i.e., I+G+NX) growing at 8 
percent, with an implied growth rate of 4.7 percent. The fourth scenario assumes 
that temperature follows historical trend, real HHFE grows at six percent, while 
household electricity price falls by one percent per year. The fifth scenario 
assumes temperature will increase by 0.05 per year6, while price follows the 
historical trend and real HHFE grows at an average of six percent. And lastly, the 
sixth scenario is the combined growth scenario which assumes that the price will 
fall by one percent, the temperature will increase by 0.05, and real HHFE will 
grow by seven percent per year.

6 This figure is based on the study of Cinco, et al. [2013] that projects temperature in the Philippines to 
increase by 0.9 and 1.1 from 2000 to 2020. The annual average increase in temperature using the midpoint 
projection of 1.0 is 0.05
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7.1. Impact of growth in Household Final Consumption Expenditure (HHFE)

Higher growth of HHFE results in higher growth of residential electricity 
demand in the future. The baseline scenario assumes HHFE growth of six percent 
per year, the strong growth scenario assumes HHFE growth of seven percent, while 
the weak growth scenario assumes that the six percent assumed growth in real 
GDP is driven by eight percent growth in components other than consumption, 
i.e., (I+G+NX), while HHFE grows at only 4.7 percent. Under the baseline 
scenario, residential electricity demand will grow at 3.20 percent per year, while 
the weak consumption and strong consumption growth scenarios yield an annual 
average residential electricity demand growth of 2.43 percent and 3.78 percent, 
respectively. By 2040, residential electricity demand under the weak growth 
scenario is 17.04 percent lower than the baseline forecast while that under the 
strong growth scenario is 15.28 percent higher than the baseline forecast. Figure 
8.1 compares the forecasts for each growth scenario.

FIGURE 8.1. Simulations based on the baseline growth scenario (in GWh)
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FIGURE 8.2. Simulations based on the strong growth scenario (in GWh)
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FIGURE 8.3. Simulations based on the weak growth scenario (in GWh)
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7.2. Impact of a price decline

Declining residential electricity prices result in higher growth of residential 
electricity demand in the future. This scenario assumes a decline in residential 
electricity prices by one percent per year, an increase in temperature following the 
historical trend, and an HHFE growth of six percent per year. From 2016 to 2040, 
residential electricity demand will grow at 3.31 percent per annum, and by 2040, 
residential electricity demand will reach 52,689 GWh, higher than the baseline 
scenario by only 2.85 percent. The minimal increase relative to the baseline 
scenario is expected considering the low-price elasticity of residential electricity 
demand, in absolute terms. Figure 8.4 compares the forecasts between baseline 
HHFE growth and the price decline scenario.

FIGURE 8.4. Simulations based on the declining price scenario (in GWh)
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7.3. Impact of increasing temperature

Increasing temperatures result in higher growth of residential electricity 
demand in the future. This scenario assumes a uniform increase in temperature by 
0.05 per year based on projections by Cinco, et al [2013], an increase in electricity 
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prices following the historical trend, and a growth of HHFE by six percent per 
year. From 2016-2040, residential electricity demand will grow at 3.22 percent 
per annum, and by 2040, residential electricity demand will reach 52,243 GWh, 
higher than the baseline scenario by 1.98 percent. Figure 8.5 compares the 
forecasts between baseline HHFE growth and the increasing temperature scenario.

FIGURE 8.5. Simulations based on rising temperature scenario (in GWh)

E
le

ct
ric

ity
 c

on
su

m
p

tio
n 

('0
00

 G
w

h) 80000

60000

40000

20000

YearNotes:
1.	 Under the rising temperature scenario, average temperature rises incrementally by 0.05 °C while 

HHFE grows at 6% and price follows historical trend.
2.	 Confidence bands for the rising temperature scenario are displayed.

2000 2010 2020 2030 2040

Rising temperature

Baseline growth

Source: Author’s calculations

7.4. Impact of combined changes in the explanatory variables

Among the scenarios adopted in this paper, this scenario yields the highest 
forecast of residential electricity demand. This scenario assumes growth in HHFE 
by seven percent, a decline in residential electricity prices by one percent, and a 
uniform increase in temperature by 0.05 per year. From 2016-2040, residential 
electricity demand will grow at 3.91 percent per annum, and by 2040, residential 
electricity demand will reach 61,942 GWh, higher than the baseline scenario by 
20.91 percent. Figure 8.6 compares the forecasts between baseline HHFE growth 
and the combined changes scenario.

FIGURE 8.6. Simulations based on combined changes scenario (in GWh)
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TABLE 10. Summary of forecasts under various scenarios

Scenario Assumptions on variables
2030

(in GWh)
2040 

(in GWh)

Baseline growth

HHFE annual growth: 6 percent

           36,648            51,230 Price: historical trend

Temp: historical trend

Strong growth

HHFE annual growth: 7 percent
                

40,036 
                

59,060
Price: historical trend

Temp: historical trend

Weak growth

GDP growth of 6 percent and non-
consumption growth (I+G+NX) of 8 
percent               

33,251
              

42,500
Price: historical trend

Temp: historical trend

Price decline

GDP annual growth: 6 percent
              

37,811 
              

52,689
Price: decline by 1 percent per year

Temp: historical trend

Temperature increase

GDP annual growth: 6 percent
                       

37,380 
                       

52,243
Price: historical trend

Temp: increase by 0.05  per year

Combined changes
GDP annual growth: 7 percent

                           
42,132 

                           
61,942 

Price: decline by 1 percent per year

Temp: increase by 0.05  per year

Source: Author’s calculations

8. Conclusion

This paper analyzed how residential electricity consumption responds 
to changes in income, price, and temperature using an ECM. The forecast 
performance of the ECM is superior to that of the ARDL based on historical 
simulations. Estimates were used to forecast residential electricity demand until 
2040 using various scenarios adopted from Danao and Ducanes [2016].

The estimates satisfied various conditions that are important in using an ECM. 
The logs of residential electricity demand, price, and household final consumption 
expenditure are integrated of order 1, while the log of temperature is integrated 
of order zero. The variables are transformed into first differences so that the ECM 
involved variables with the same order of integration. The Engle-Granger test 
showed that the log of residential electricity demand is cointegrated with the log 
of household final consumption expenditure. Also, evidence of weak exogeneity 
is found in the explanatory variables. 

Estimates show that demand responds negatively to prices, positively to 
income and temperature. Long-run elasticity for real household final consumption 
expenditure is larger than in the short run since households can adjust the 
stock of appliances in the long-run and thus, be more responsive to changes in 
income. Meanwhile, the short-run estimates for price and income fall within the 
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bounds reported in the meta-analysis of Espey and Espey [2004]. Each of the 
models passed standard diagnostic and parameter stability tests. The forecasting 
performance of the ECM for long-run simulations is better than the ARDL. Despite 
the limited sample size used in estimating the elasticities, the out-of-sample 
predictions were highly accurate.  

Scenario analysis provides a range of possible values of long-term residential 
electricity demand. The simulations are compared to that of the baseline six 
percent growth in household final consumption expenditure. By 2040, the weak 
growth scenario provides the most conservative forecast, lower by 17 percent than 
the baseline scenario, while the combined changes scenario provides the most 
aggressive forecast, higher by around 21 percent than the baseline scenario. The 
strong household consumption growth scenario also provides a high forecast 
considering the fairly high long-run elasticity of demand with respect to income. 

Future research can extend this work by using alternative techniques to 
estimate demand elasticities. For instance, in testing for cointegration, it would 
be worth exploring how the results would be different using an ARDL-bounds test. 
Also, using a longer time series data that examines structural breaks would likely 
increase the degrees of freedom and improve the quality of estimates. Along with 
the forecasts for residential consumption, forecasting industrial and commercial 
consumption are also important for policymakers. These customer groups 
have dynamics separate from what is analyzed in this paper. Future works that 
investigate consumption behavior from these customer groups are recommended.

These results are useful to guide policymakers in determining the size of 
future expansion in generation capacity to ensure that future electricity demand 
is adequately met. The Philippines has experienced situations in the past wherein 
generation capacity was not able to meet demand leading to frequent load 
shedding. Policymakers need to ensure that such situations are prevented from 
occurring in the long-term. Thus, it is critical for energy policy planners to have 
an accurate estimate of electricity demand growth over time.
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