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Abstract

This paper shows that a NECESSary condition fnr.strict
quasiconcavity is that each level set is cunfainnd in the
boundary of fhﬂ aaéﬁciated uppér level set. This condition
and fhe strict ﬂanﬁﬁxity of upper level set# are sufficient
for strict quasiconcavity and are also necessary when the

function is continuous with a strictly convex domain.




STRICT CONVEXITY OF THE UPPER

OF STRICTLY QUASICONCAVE

Intraduction

Strict guasiconcavity of a utility function or of a
production function is often assumed in order to ensure a
unique global utility-marximizer or a unique global cost—
minimizer. In these cases, the consumer demand function
and the conditional input demand functiom are single—
valued mappings. [For the role of strictly ﬁnasicnncnva
functions in economic theory, see Diewert (1981)].

Quasiconcave functions are characterized by the
convexity of their upper level sets [Mangasarian (1969},
Avriel (1976)]. It is tempting to conjecture that strictly
quasiconcave functions are characterized by strictly
convex upper level sets but it is easy to construct
examples showing that this is not true. Thompson and
Parke (1973) presented some conditions relating atrict
quasiconcavity to the strict convexity of the upper level
sets. In particular, they claimed that a continuous
strictly guasiconcave function has strictly convex upper
level sets. We give an example to show that thi; is not
true unless the domain of f is itself strictly convex.

This paper examines the relationship between strict

quasiconcavity and the strict convexity of the upper level




seta by _:"”;Igi the relationship between the level set
and thg;-}' a ry of the associated upper level set. We
Eirst}ptﬁiyik.; line segment characterization of strictly
quasiconcave functions that is analogous to the line
segment characterization of quasiconvex functions found
in Berge (1963). Then we show that a necessary condition
for strict guasiconcavity is that each level zet is
cﬂﬂt&inng in the boundary of the associated upper level
set. Thizs conditiom and the strict convexity of the upper
level sets are shown to be-suffici-::nt for strict quasi-—
concaviiy and are alse necessary when the function is
continuous with a strictly convex dﬂmaiq.

Hotations. R denotes the n—dinensiunﬂ! Euclidean
space. For any set 3 inlnn, the boundary of 8§ is denoted
by bi8)}. If x,¥y € R®, the line segment joining x and ¥y
is demoted by [x,¥]. If we exclude x from [x,¥] we use

the symbol (x,y¥]. Fenctions are real-valued.

Line Segment FProperties of Strictly Quasicomcave

Fenctions

A function f defined on a convex subsst O

O

of BT is siconcave (striectly quasiconcave) on C iff
e ’



2.2. Theorem. , A function £ is strictly quas

convex subset C of B® iff for all x,¥v € Sy ' ¥, the

function g defined by g(t) = £[{1-t)x + t¥] is strictly

quasiconcave on [0,1]. "

Proof: (=) Let t .t € [0,1], t,# ., 8B E (0,1), and

git,) 1 g(t,). From the definition of g. we have
gl{1-8)t,+ 8t,] = £[{I-(1-8)t;~ Bk, }x + {(1-0)t, + Ot }y)

= £1{6 + (1-0) - (1-6)t,— Ot }x + {(1-8)t + 6t 3y]

= ELAL-03{1-%, 3 + B{1—t, 0} x ¢ {(F6)E + ot 3%l (1)

We note that (1-%¢, )x + t,¥ and (1—E_Jx + t.¥ are
elements of C. Since L, #t, and x ¥ ¥y, then
{l—tljx + tiy # fl—t:}x + tiy.

Since glt,) = £F(1-%,)x + L, vl {2}
and B(t,) = £{{1-% )x + t.xl, {3)
then the condition g(t,) £ g(t,) implies that

E{1=t,)x + t,¥] £ Fl(1t,)x + t ¥y].
By the strict gquasiconcavity of f,

! TI(i-t )x + t,¥] « fiC1-e}{(1-t, )x + t,¥3

1 + 8{{1l-t.lx + L y}] =

. = £I{(1~8)(1-t,) + ©(1-t )}x
+ {(1-@)t,+ Ot_3}y]
or. by (1) and (2), g(t,) < gl(1-0)t, + Ot,].

Hence, g is strictly quasiconcave on [0.1].




(<—) LeE XEE. x # v, 6 € (0,1), and £(x) < f(y).
Note thatNNREE) — £(x), £(1) = £(y).
By.ﬁssu;ﬁtf:'a £(0) = f(x) £ £(¥) = g(1). By the strict
quusicunciviﬁ*1ﬁf E» gl0) < gl[(1-0)(0) + 6¢1})1]

ar £{x)

g(0) < g(8) = £[{1-9)x + Oy].

Hence, f is strictly gquasiconcave on C. l

Remark. Theorem 2.2 implies that the restriction of a
Etriﬂflr'quasicuncava function to a convex subset of its

domain remains strictly guasiconcave.

Theorem. Let f be quasiconcave on a convex subset C of
R". If 'f attains its minimum at an interior peint of C,

then f(x) is constant on some line segment in C.

Proof: Let x* be a minimizer of f on €, i.e.,

£{(x") = min {f({z): x € C}.
If f(x) is constant on C, then there is nothing to prove.
Otherwise, there iz an x' € C such that

EEx™) < £(xY). {4)
Since x* is an interior point of C, then there is an
x° € C and a t* € (0,1) such that x* = (1-t*)x® + taxi.
For each x € [x".x"). there is a & € {0,t*] such that
x* = (1-@)x + Bx'. If £f(x') ¢ £(x), then, by the
quasiconcavity of f, :
fix') £ £[(1-6)x + oxl] = £(x"),
contradicting (4). Hence, f(x) ¢ f£(x!). Again, by the
g ‘of £, this implies that
5




-

flx) £ fl(1-0)x + ex'] = f[#;‘ ="

. T LR
Since £{x*) ik minimum on C, then f{x) -ﬁﬁfm.
bk T
£f{x} is constant on the line segment [:l:“.:l;'-}. i

Corollary. A strictly guasiconcave funtting defined on
4 convex subset C of R® canpot attan its minimum at an

izierior point or £

Preof: Follows from Theorem 2.4 and the fact that a
strictly quasiconcave function cannot be constant on

a line segment. E

The Upper Level Sets of Strictly Quasiconcave Functions

Definitisrs. A converx subset C of RD j= strictly conver

iff X,y €EC, x £ ¥, and & € (0.1) imply that (1-8)x + éy

is an interior Point of oo

Let £ be a function defined omn «lvex subset O of

R" and let o be in the range of f. The upper level set of

f at @ ig defined as
] ULf{ﬂJ et e M IR e TS a}.

The level se* of £ gt o j= defined ag -
Le{a) = {x € C: f(x) = a).
Theorem. Let f be strictly guasiconcave on a convex

subset C of B®. Then Le{a) € bIUL; (a)] for EVery o in

the range of E.




). Then x* € UL, (a). Since f is

4 [a} is & conver subset af C

Hence, the restriction of f to
Juasiconcave. Note that

in (£(x)E % € UL, (a))

B¥ Coroliary 2.5, x* is net an interior

Hence, x* ¢ LIVL, (a)l. §

. . O T be defined on the clased interval [6.3] by
T g 5 L1
5 4 | b
TEEY = i, B A e
. MR A PEital s

(Figure 1). The upper level s&ts, Feing closed intervais,

£{c)

Figure 1




are strietly convex but £ is.mol gt AP .

We have UL, (1} = [1.2], BIUL, (13] = {1,2} @

Hence, the level set at @ = 1 is pot contained in the

boundary of the upper level set. We prove mext that if
the upper level sets are strictly convex and esach level
gset is contained in the boundary of the upper level set,

then £ is strictly guasiconcave.

Theorem. Let f be defined on a convex subset C of R®. If
UL, (a) is strictly convex and Lg(a) € b[UL; (a}] for all «

in the range of £, then f is strictly quasiconcave on C.

Proof: Let x,vy € C, x # ¥, 8 € (0,1}, and £{x) £ £(y).
Let E{x) = Then x,¥v. E ULf{u}. By the strict convez-—
ity of UL (a), the point z = (1-8)x + 8y is an interior
point of UL, (a); hence, z § b{UL;(a)] and so z & L, ().
Hence, f(z) » @ = £f{x) and so [ is strictly guasiconcave

on C. I

Remarks. Striet quasiconcavity does not necessarily
imply strict convexity of the upper level sets even

under continuity. Let

¢ = {{x, .,x, )4 x: + xg TR T el
and define £ onm C by -
fixr ..} = (1 —xF — I:?H

Note that f is continuous on C. The graph of f is the

portion of the hemispherical dome above C (Figure 2).




Foy

Figare

A hemd :-:plmr iial _:_j_f:rmrr in slrictly concave, hence, slrick Ly
AR T Comeave. Wy Fllm rk I‘ 3 . it 5 rostricetion to 7
sifrictly _-l]'llﬂ'ﬁ::i concave on 0. Nobe Lhat Ul, (0) = & which

is not stricbly convex. However, we prove ion the nexl
theorem thal if a strictly guasiconcave funclion is

gunt}nqqﬂgﬁnﬁyﬁ strictly convex domain, thon its upper

e el ined and cont inuous on a strictly
B®. 11 f is slriclly quasiconcave on

striclly convex for all a io Lhe range
) :




Proof: Let UL, (a) be
X,y € ULg(a), x £ ¥, 8
z = (1-8)x + By. By .|=-"'
a £ £(x) < £f(z). This
strict convexity of C, :-.
the continwity of [, there is &3

that for all u € H(z), f{u) > a- Th :.-

N(z) € UL, (a). Hence, z is an interios

It follows: that U!'_.f{cr.] is strictly m'ln-i.. I

10




Avriel, M., 1976, Nonlinear Programming (Prentice-Hall,
Englewood Cliffs, N.J.)

berge, C.. 1963, Topological Spaces (MacMillan, N.¥Y.)}

Diewert, W. E., 1981, Generalized Concavity and Economics,
in: 8. Schaible and W.T. Ziemba, eds., Generalized
Concavity in Optimization and Economics (Academic Press,
N.¥.) 511-541.

Hangasarian, 0., 1969, Noniinear Programming (McGraw—Hill,
N_-¥.)

Thompson, W. A. and Darrel W. Parke, 1973, Some Properties
of Generalized Concave Functions, Operations Research 21.

305=-3113.

11




