Discussion Paper No. 8701

April 1987

Interpreting the Basic Rational Expectations
Macroeconomic Model

by

José Engarnación, Jr.

NOTE: UPSE Discussion Papers are preliminary versions circulated privately to elicit critical comment. They are protected by the Copyright Law (PD No. 49) and not for quotation or reprinting without prior approval.

Abstract

This rests on an implicit normalization that puts the natural level Lⁿ at the classical full employment point which the presentation defines Lⁿ in terms of the condition that the condition that the condition that the condition that the going price while firms maximize the profit. The resulting implications are closer to standard theory: fully anticipated monetary policy can, and fully anticipated demand changes must, affect output and employment.

writed from said only and paid, but let there he R more reli-

José Encarnación, Jr.

I. Introduction

Lot the supply function in the ith variet be given ?

The central conclusion of the rational expectations (r.e.) literature,

in that systematic monetary policy is ineffective, is now known to be not

secondary if one departs from the simple specifications of what might be called

the basic t.e. macroeconomic model. If one allows for nonlinearities (Shiller

(1978) and Snower (1984)), stochastic parameters (Dickinson, Driscoll and Ford

(1982), intertemporal substitution effects with overlapping generations

(Azariadiz (1981)), or nonnormal distributions of shift variables (Otani (1985)),

the ineffectiveness result need no longer hold. However it still seems to

hold in the basic model. In this paper we will take a closer look at its

rationale and argue that a coherent interpretation of the model leads to a

different conclusion.

II. The Basic Model

Lucas (1973), Taylor (1985), and Attfield, Demery and Duck (1985) have formulated slightly different versions of a basic r.e. model. Following Taylor mostly, it might be stated as follows.

Assume identical firms and only one good, but let there be N separate markets each with the same number of firms. Because of information lags the current price P_i in market i (i = 1, ..., N) is not known elsewhere during the current period. For convenience we will write $x = \log X$ if X is a variable but we will also refer to x as the variable itself. Accordingly we will say that $p_i = \log P_i$ is the price in the ith market and $p = \sum p_i/N$

is the average price, short for the logarithm of the geometric mean $(P_1 \, \ldots \, P_N)^{1/N}$.

Let the supply function in the ith market be given by

$$y_i^s = y^n + c \ (p_i - E_i p)$$

The state of the constant (1) and the constant of the cons

nolizouhovinī .l

where y^n is the "natural" or normal level of output, c is a positive constant, and $E_i p = E(p|p_i)$ is the expectation of p given p_i . Suppliers are interested in knowing p, which is taken as a cost proxy, $\frac{2}{p_i}$ but they can only have $E(p|p_i)$. The actual p_i is determined by (1) and the demand function $\frac{3}{p_i}$

$$y_i^d = y^* + a (m - p_i) + \delta_i$$
 (2)

If any other to appropriate learning to ((1891) a Harraga) (2)

The angle of the street of the street as a str

where δ_i is a random variable whose expected value $E\delta_i = 0$, y* is normal demand net of real balance effects expressed through $a(m-p_i)$, a is a positive constant, and the exogenous money stock m is stochastic. Putting $y_i^s = y_i^d$,

$$p_i = (a + c)^{-1} (y* - y^n + cE_i p + am + \delta_i).$$
 (3)

Now suppose that from past observations it can be assumed that p_i and p_i are jointly normally distributed, $p_i = p + \varepsilon_i$ with ε_i random and $E \varepsilon_i = 0$ so $Ep_i = Ep = \hat{p}$, and $Cov(p_i, \varepsilon_i) = 0$. It follows that $Cov(p_i, p) = \sigma_p^2$, and the standard formula

$$E(p|p_i) = Ep + \frac{cov(p_i, p)}{var p_i} (p_i - Ep_i) = 1)$$

the current parlos. For convenience we will write x = log N . N . Solver then gives
variable but we will also refer to x on the wariable limital. Accordingly

$$E_{\hat{i}}p = \hat{p} + b(p_{\hat{i}} - \hat{p})$$
 and all offs at a step offs at . A got - , q sade too (4) we will also a step of (4) where the same of the same of (4) where the same

where $b = \sigma_p^2/(\sigma_p^2 + \sigma_c^2)$ assuming var $\varepsilon_1 = \sigma_c^2$ for all i. Equation (1) can therefore be written as

$$y_{i}^{s} = y^{n} + \gamma (p_{i} - \hat{p})$$
 as when here, $\hat{p}_{i} = a_{i} + c_{i} + c_{i}$ (11) or said (5) A

parting $\gamma = c(1 - b)$. Substituting (4) into (3) one gets

$$p_i = (a + \gamma)^{-1} (y* - y^n + \gamma \hat{p} + am + \delta_i)$$
 a sense migra not - laisteen (6) ...

the solel, However, sore continuous, takes

random character in aggregate demons can affin

is no uncertainty about chars. With only on

so del of Section II takes the sweeter

Year YChigh witch the ment property of

without afforting y and y.

which is compatible with the previous assumption that $p_i = p + \epsilon_i$ taking $\epsilon_i = (a + \gamma)^{-1} \delta_i$ and $\sum \delta_i = 0$.

Let supply in the average market or in the aggregate be denoted by y^{S} and demand by y^{d} . Writing $y = y^{S} = y^{d}$, (5) and (2) give

$$y = y^n + \gamma (p - p)$$
 (10) and (2) and superscal as (21) has (2) at fact on $y = y^n + \gamma (p - p)$

The expected values \$ \$ and \$ of the corresponding variables must

so $\hat{y} = y^{D}$, and

the case wags and labor
$$\mu_1$$
 the only werlands $\hat{y} = \hat{y} + \hat{y} = \hat{y} + \hat{y} = \hat{y}$

whence

From (8),

$$p = a^{-1} (a^{2} - a^{2}) = a^{-1} (a^{2} -$$

Using (9) and (II) In

$$y - y^n = \gamma (p - \hat{p})$$

$$= \gamma [a^{-1} (y^n - y) + m - \hat{m}]$$

$$= a\gamma (a + \gamma)^{-1} (m - \hat{m}).$$
(11)

According to (11), $y = y^n$ if $m = \hat{m}$, and only an unexpected difference $m - \hat{m}$ can make output y differ from y^n . This much is certainly correct in the model. However, more conclusions have been drawn that are striking and controversial. The claim that a fully anticipated change in monetary policy that changes \hat{m} will have no effect on output is correct only if, in (11), y^n is invariant with respect to changes in \hat{m} . The stronger claim that "only random changes in aggregate demand can affect the level of real output; predictable, systematic changes in aggregate demand will affect prices but not output" $\frac{5}{2}$ is correct only if y^n is invariant with respect to changes in y^* so that in (9) and (10), an increase in y^* merely increases \hat{p} and p without affecting y^n and y.

It is quite clear that the supply function is crucial. Its specification and the natural rate y deserve a close look.

III. The Supply Function

To get at a rationale for equation (1), suppose first the case where there is no uncertainty about costs. With only one good in the economy, let W be the money wage and labor L_i the only variable input in market i. Since the model of Section II takes the average price as a cost proxy, (1) can be written as

$$y_i^s = y^n + c (p_i - w).$$
 (12)

If the firm maximizes profit $P_i Y_i - WL_i$ subject to a production function $Y_i = Y(L_i)$ with the usual properties $Y'(L_i) > 0$ and $Y''(L_i) < 0$, it is necessary that $Y'(L_i) = W/P_i$. Consider the normalization

$$Y^{*}(L_{\underline{i}}) = 1$$
 at $Y = Y^{n}$. (4) at (6) thus (6)(13)

hence $p_i = w$, the optimal output $y_i^8 = y^n$, and if

The lag to the uncertainty case, suppose now that W is a random white $\hat{W} = \int_0^\infty W g(W) dW$ for the lagrange wage. If the firm maximizes expected profit

$$\mathbf{P_i} \cdot \mathbf{L_i} = \int_0^{\infty} \left[\mathbf{P_i} \cdot \mathbf{Y(L_i)} - \mathbf{WL_i} \right] g(\mathbf{W}) d\mathbf{W} \qquad \text{and the problem spants} \quad \mathbf{Mind}$$

$$= \mathbf{P_i} \cdot \mathbf{Y(L_i)} - \hat{\mathbf{W}} \cdot \mathbf{L_i} \qquad \mathbf{Mind} \quad \mathbf{Mind}$$

RS

The preceding paragraph can be repeated word for word, $\hat{\mathbf{w}}$ and $\hat{\mathbf{w}} = \log \hat{\mathbf{w}}$ replacing \mathbf{w} and \mathbf{w} respectively. Taking expected profit maximization as amiomatic, (13) thus provides a rationale for (5), reading $\hat{\mathbf{p}}$ there as a proxy for $\hat{\mathbf{w}}$.

IV. The Normal Level of Output The Normal Level of Output

Omitting subscripts henceforth to speak of the representative firm or the economy as a whole, and denoting the normal employment level by L^n , (13) implies $Y'(L^n) = 1$. To determine Y^n it therefore suffices to define L^n . The "new classical" literature does this by the condition that the labor market clears.

In Fig. 1 the curve labelled L^d is the locus of points satisfying

Y'(L) = W/P; i.e. given W and P, employment of

$$L^{d} = f(\hat{W}/P)$$

workers maximizes expected profit, provided of course that their output does get sold at the price P. L^S is the labor supply curve. Suppose Y'(L) = 1 at $L = L_C$, where L_C is the classical full employment level given by

tion ymore

 $L^d = L^S$, which makes L_C the normal level of employment, $(\hat{W}/P)_C = 1$ the normal (expected) wage, and $Y(L_C)$ the normal rate of output. This normalization at L_C has the curious consequence, however, that if actual employment L is greater than L_C and the economy is on the L^d curve as required by (14)—the economy is say at V—one is forced to say that workers have been fooled into supplying labor in excess of L_C at a less than normal wage. Since rational workers know from the shape of the L^d curve that $L > L_C$ would be hired only if $\hat{W}/P < 1$, surely they would not supply any $L > L_C$. Even at the level of a particular market $L > L_C$ is even at the level of a particular market $L > L_C$ and individual firm, rational workers would know that employment greater than normal would be offered only if $P_1 > \hat{P}$ (see (5)), which means an expected wage lower than that required to supply the normal amount of labor.

Also, if $L < L_C$ so the economy is say at U, one is forced to explain the existing unemployment as the result of voluntary decisions to search for higher paying jobs. But it is obvious from the L^d curve that $L < L_C$ only if $\hat{W}/P > 1$, which means that the expected wage is in fact already higher than normal. Since the unemployed would be willing to work for less than the current expected wage, there is simply no rationale for search activities in these conditions, and we conclude that the usual interpretation that makes L_C the normal employment level is incompatible with rational behavior on the part of workers.

V. An Alternative Interpretation

There is a different way of defining $L^{\hat{n}}$ which is more self-consistent. Taking \hat{W} and the expected money stock \hat{M} as exogenous, let other unstated demand parameters be given. Supposing that the employment level is $L^{\hat{d}}$, the

price level is P, and the realized money stock is M, there would be a corresponding demand for output. Let

$$L^{\pm} = h(L^{d}, \hat{W}/P, M/P)$$
 (15)

be the amount of labor needed to produce that output, and if $M = \hat{M}$ in (15), write

$$\hat{L}^{k} = h(L^{d}, \hat{W}/P, \hat{M}/P).$$
 (15')

In Fig. 1 the depicted \hat{L}^k curve is the locus of points $(\hat{L}^k, \hat{\mathbb{W}}/P)$ determined by (14) and (15'). $\frac{6}{}$

Consider the normalization Y'(L) = 1 at $L = L_K$ which is defined by $L^d = \hat{L}^k$. This makes L_K the normal level of employment, $(\hat{W}/P)_K = 1$ the normal wage, and $Y^n = Y(L_K)$ the normal output rate. Observing from (14) and (15') that L^n satisfies

$$L^n = h(L^n, \hat{W}/P, \hat{M}/P)$$
 and $L^n = f(\hat{W}/P)$ (16)

(V) and (S'))-there is no reason why the same relationship the ('V)

it must be the case under rational expectations that P satisfies

$$L^{n} = h(L^{n}, \hat{\mathbf{w}}/\hat{\mathbf{r}}, \hat{\mathbf{M}}/\hat{\mathbf{r}})$$
 and $L^{n} = f(\hat{\mathbf{w}}/\hat{\mathbf{r}})$ (16')

and therefore P = 0 as required by the W proxy role of P.

As drawn. Let L_K since $L_K = L_C$ would be fortuitous and $L_K > L_C$, though possible, seems less usual. Notice that if $M = \hat{M}$ and the economy were to be at U, some of the output produced would be unsold at that price level— \hat{L}^k being less than L^k there—which would require price and employment reductions until price L^k to reached.

The employment level L that will be realized obtains from (14) and (15) by putting L L L L L L L R means a larger real balance effect

hence an L^k curve to the right of the L^k curve, an M larger than expected implies higher than normal P, L and Y in consonance with the model of Section II. More interesting, firms are profit maximizing, the output produced is exactly the amount demanded at the going price so the goods market clears, and therefore although unemployed workers may want employment at the prevailing wage, there would be no reason for firms to hire a larger work force.

Since L^n as defined in this section depends on the exogenous \hat{M} and W, the Lⁿ level depends on these parameters. If policy revisions induce equal proportionate increases in \hat{M} , \hat{W} and \hat{P} , evidently (from (16')) \hat{L}^n would be quite unchanged. However, although it could be argued that changes in M should produce equiproportionate changes in P--this is necessary in the model of Section II in order for y* and y" to remain the same (see (7') and (8')) -- there is no reason why the same relationship should hold between \hat{M} and \hat{W} . Even accepting that $\hat{M}^{\dagger}/\hat{P}^{\dagger} = \hat{M}/\hat{P}$ (writing \hat{M}^{\dagger} , \hat{P}^{\dagger} and \hat{W}' for the new values), one may have $\hat{W}'/\hat{P}' < \hat{W}/\hat{P}$ in which case, looking at (16°), the new Ln, must be larger than the previous Ln. This happens if the net result of the changes in the parameters is a rightward shift of the Lk curve, which means a new normalization Y'(L") = 1 appropriate to the new parameters. Thus is Section II, y is not invariant with respect to changes in m, and therefore the monetary policy ineffectiveness conclusion does not hold. to be at U. some of the burnburg rendered and to once JU in md of

It is also clear that even with the same $\hat{\mathbb{M}}$ and $\hat{\mathbb{W}}$, changes in other unstated demand parameters (which determine the position of the $\hat{\mathbb{L}}^k$ curve) will affect the \mathbb{L}^n level. In brief, as should be expected, demand factors must have an effect on the normal rate of employment and output.

VI. Conclusion

The argued that the basic r.c. model implicitly involves a second function and an expected profit maximization assumption, but a second function at the normal level of employment Lⁿ yields the model. The usual interpretation puts Lⁿ at the classical full employment level; weever, this has implications contrary to rational behavior on the part of second proposed to define Lⁿ in terms of the condition that the cutput produced meets demand at the going price. In this alternative view, business firms hire only that number of workers whose output can be sold, and they maximize expected profit doing so. In contrast to the conclusions drawn in the r.e. literature, the results are closer to standard Keynesian theory: fully anticipated monetary policy can, and fully anticipated demand changes must, affect output and employment.

University of the Philippines

Notes Notes

being on the curve to the right of the In core in it there it is

- 1. The "most famous proposition advanced by the rational expectations school [is] that with regard to monetary policy, only unexpected changes in the stock of money affect the level of output" (Dornbusch and Fischer (1984), p. 567).
- 2. "The [average] price level should be an indicator of the firm's input costs" (Taylor (1985), p. 397).

output produced mantu demond or the going prices. In this alicential view,

to the rise literature. In realize are aloser to etandard Reynoglan theory; of

In you the new solvest, our pay have \$1,50 to \$1,700 and the return wild!

- 3. See Attfield, Demery and Duck (1985), p. 53.
- 4. See e.g. Buiter (1980).

. P.

5. Attfield, Demery and Duck (1985), p. 43.

as (15"), the nor 1" want to haven it is the previous to

the I have then exper a new accordingtion T' (C') - 1 april 1

the new parameters. True is Section 11, 2 has one from horse

en thought for he are the office the moletary policy lief facilities

the at it when about they were been the time. It, and the

will affect the off level. In bridge as should be expected.

many harmony and fight the partial order of medical and comment and between

6. Except for W in place of W, Fig. 1 is similar to Fig. IVb in Edwards (1959).

References

- Attfield, C.L.F., Denery, D. and Duck, N.W. (1985). Rational Expectations in Macroeconomics. Oxford: Blackwell.
- Azariadiz, C. (1981). 'A reexamination of natural rate theory.' American

 Economic Review, vol. 71, pp. 946-960.
- Buiter, W.H. (1980). 'The macroeconomics of Dr. Pangloss: a critical survey of the new classical macroeconomics.' <u>Economic Journal</u>, vol. 90, pp. 34-50:
- Dickinson, D.G., Driscoll, M.J. and Ford, J.L. (1982). 'Rational expectations, random parameters and the non-neutrality of money.' <u>Economica</u>, vol. 49, pp. 241-248.
- Dornbusch, R. and Fischer, S. (1984). Macroeconomics, 3rd ed. New York:

 McGraw-Hill.
- Edwards, E.O. (1959), 'Classical and Keynesian employment theories: a reconciliation.' Quarterly Journal of Economics, vol. 73, pp. 407-428.
- Lucas, R.E., Jr. (1973). 'Some international evidence on output-inflation tradeoffs.' American Economic Review, vol. 63, pp. 326-334.
- Otani, K. (1985). 'Rational expectations and non-neutrality of money.'
 Weltwirtschaftliches Archiv, vol. 121, pp. 203-215.
- Shiller, R.J. (1978). 'Rational expectations and the dynamic structure of macroeconomic models.' Journal of Monetary Economics, vol. 4, pp. 1-44.
- Snower, D.J. (1984). 'Rational expectations, nonlinearities, and the effectiveness of monetary policy.' Oxford Economic Papers, vol. 36, pp. 177-199.
- Taylor, J.B. (1985). 'Rational expectations models in macroeconomics.' <u>Frontiers of Economics</u> (ed. K.J. Arrow and S. Honkapohja). Oxford: Blackwell, pp. 391-425.

native with China to the native content of Dr. Pangleses a critical serving a

of the new simulations of the contract to the learner volume to

Fig. 1 Fig. 1 (1984). 'Burloan expectationarities, and the Fig. 1 (1984). The standard Papers, vol. 36,

PR- 177-199.

laster, J.H. (1985). 'Mational especiations ending in ancrescionals;'
| Freerings of Leonoules (ed. K.J. Arrew and S. Honingohje). Oxfords
| Stackentl. up. 191-425;