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ABSTRACT

In the sultiple regression model v = %8 + £, the coefficient

-

vector 8 may be estimated by minimizing the sum of absolute errors

(MSAE) . This paper shows the following results under MSAE estimatiom:

s

{1) T# k coefficients Euj are nonzerocs, then the estimated regres=

sion eguation accurately predicts at least k cobservations; (2} As

in the case of least squares regression, B has an infinite number

of estimates in the presence of perfect multicollipearity.




Regressicn by Minimum Sum of Ahsolute Errvors:
Somi Results
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1. Introduction

Consider the multiple linear regression model
y=xf + £ (1)

whare y is the regressand, x = [x1, Hon o wees :k] the vector
of regressors, & = [51, By 555 ﬂk]' the wector of unknown
coefficients, and £ the stochastic disturbance term. The most
widely used method of estimating B is by least squares, i.e.,
by minimizing the sum of squared ervors (MSSE). Another method
is that of minimizing the sum of shzolute errors (MSAE), i.8..
the MSAE ectimate of B is obtained by minimizing | |e |-
Although MEAE estimaticn was suggested as far back :.l; 1688 by
Edgeworth (Bowley, 1%28), its use has been limited because of
compatational difficultiss. It was anly in the 1950'z that
articles appeared (Charnes et al., 1955; Wagner, 195%) showing

that the MSAE estimator can be obtained as a solution to a linear

programming problem.

The MSAE regression problem is stated as follows:
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Ta transform thisz into the standard form of the linear programming

problem, we introduce the positive and negative parts of a variable

v of arbitrary sign by letting

w5 = max {0, v}
v = max [0, -v}
Then
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Thus, the MSAE problem can be restated as follows:
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then the MSAE problem can be written in matrix form:
I + -
MSAE=LFZ: Minimize gvE e

+ - e -
g.t. XB - +Ig -1 = ¥

R

0.

Remark: It is clear from the constraint of MSAE-LPZ that the
coafficient matrix has rank n. Consequently, a basic optimal solution
has n basic varisbles. If k1 of the ﬂj's are basic variables in
an optimal solution, then there are k, cf the Ei‘s that are nenbasic;

henoe, at least k_l of ths ti's equal zero, i.e., the MSAE regression

hyperplane passes throwgh at least k, sample points. The implication for




prediction is that the MSAE regression eguation can accurately

predict hisztorical Jdata in at least k1 oot of [ CASES.

EJ’:E].E 1

Consider the data sot:

whosze acatrer diagram is shown in Figure 1.

Visual inspection of the scatter diagram indicates that the

intercept and zlope of the regresszion line
¥y = ET + sz + £

are nonzero, i.e., 8 #0, B, ¥ O  The precoabing reaath Sars Dokt
the MSAE regression line must pass through at least two points. - The
results of the MSAE regression done by linear programming confirms

this as shown in Table 1 and Pigure 1. In fact, the MSAE regression

line passzes through thres points labeled L, B, €. The H55E regression

results are also shown for comparison,
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Table 1. Predicted Values and Basiduals
= z ¥-Estimate Regiduals
MSAE HNSSE MSAE MSSE
1 1 1. 20000 1.67273 =0 _ 50000 =0.67273
2 3 2. 0000 2. 14545 ¥ . 00000 0.B5455
3 2 2. 50000 2.61818 =0 50000 -0.61818
4 3{A) 3. 00000 3.09091 0. 00000 =D 08091
5 4 3. 50000 3.E636d 0. 50000 0.43636
& 5 4.00000 4. 03636 100000 0. 36364
- 4 4, 50000 4. 50909 =0, 30000 -0, 50909
. 5B} 2. Q0000 4.98182 0, 00000 Jd.01818
9 5 5w SO0 5.45455 =0, 30000 =0. 45455
1d 6{C) €. 00000 S.92727 O L 00000 0.07273
e
Teble 2. Regression Coefficients -
MERE MESE
110 12
E1
0.5 G.47273




2o The Problem of Perfect Multicollincarity

any linear programning subroutine can solve MSRE-IFZ.
‘Farula and Welllington {1977) developed a procedure thet is based
on an efficient dual simplex algorithm. The authors, however,
remark that "unlike the MS55E regression line, the calculaticns
for the MSAE regression line are not affected by linear dependencies
among the regressor variables™. This statement is inaccurate. The
presance of linesr dependencies among the regressor variables results
in multiple estimates of [ under MSAE estimation; in fact, there
are an infinite number of estimates. Purthermore, a gimilar situation
alsoc holds wnder MSEE estimation when the regressor wvariables are

linearly dependent.

The presence of linear dependencies among the regressor
variables is called the problem of extreme or perfect multicollinearity.

The normal equations under MSSE estimation of (1) is given by

.

L = L {2}
X IEI'ES-E Ay

Perfect multicollinearity makes  X'X a singular matrix which makes

s

it impessible to obtain B since the ordinary inverse of X'X

dees not exist. However, the normal equations (2) is always consistent

(Graybill, 1969) and a solution (in fact, an infinite set of soclutions)




for EHEEE can be cbtained by using the generalized inverse of X'X.

The general solution is giwven by

e = o¥rys 1o awl e (3)
where {x*x}q is the generalized dnverse of X'X, ‘I 'is the identity

matrix, and £ is an arbitrary vector (Graybill, 1969).

We now show that in the presence of perfact multicollincarity,
the estimate of E under MSAE estimation is not unigue, i.e..
MSAE-LPZ has an infinite number of optimal solutions. It i=s clear

that MSAE-LPZ has a feasible solution given by
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Morecover, the gbjective function is bounded below by zero: hence,

MSRE~-LFPZ has an optimal solution.



For exposziticonal convenience, consider the cese where a colunn
of X is scalar multipie of another colmmn.  Let B, and HE be the

coefficients of the linearly dependent regressors *, and X

: - + = 4+ X,
respectively. Then, in MSAE-LFZ, the varisbles £, ﬂ,‘. Ez’ EE

hare zerc coefficients in the obhjective function while the columns
aggocisted with them are pairwise linearly dependent. Suppose that

E-: is in the baszis of the optimal soluticn obtained by the simplex

+

algorithm. Then E'Tr f-"'rz; B

would violate lingar independence of the bazis vectors. The portion

canhot be in the basis since this

<f the ocptimal tablesu {in cancnical form) corresponding to these

variablies would lock like the following:

Basic Variables | ... [-3: 8 5; 8 ... | Right Hand Side
dojective

.t Sem b

! it ; 0 o 0 0 R
. 0 o 5 % Sie :

+ +

|3_l R =1 L+ —x waw E1
0 0 o 0 y




where ubﬂ is the optimal value of the objective function. The

column vector associated with ﬂ: is the unit wector since E-_|+ is

in the basis. The other column vectors follow from the fact that

they are scalar multiples of the vector associated with B:. Hobo

that F.-_;| iz a nonbasic variable whose objective functionm coefficient
iz zerc in the optimal tablean. This implies that the optimal solution
iz pot unigue since & necessary and sufficient condition for the
unigqueness of an optimal solution is that the objective function
coefficients of the nonbasic variables in the optimal tsbleau are
positive (Simmonard, 1966). Another optimal solution can be obtained
by pivoting on o {if ¢ >0} or om -2 {(if o < 0). This would put

’ = . . + ;i
B or EE in the basis, replacing E"[ which now becomes zero.

2 +
" 8
The new Ept:.ml solution has E_I = 0, E2 = ET' (if o> 0) or

5

1
EE - iy (if @ < 0). Since the set of optimal solutions iz conwvex,

it follows that there are infinite mmber of cptimal sclutions.

-

Femarks: (1} The general case is proved in a similar manner. I
rank X < %k, then in the cptimal solution, not all of the B's
will appear as basic variables since this would violate the linear

independence of the basisz vectors. Suppose that ﬂ‘;. < P E}*:_

#l
e 1

+
]
that the associated regressors X

(where E;: = B or B;! are in the optimal basiz. This implies

¢ :-;zr Py :ﬁk‘ are linearly

independent. Moreover, there is a nonbasic wariable ﬂi whose
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associated regressor x, 18 2 linear combination of =x_, :v:z. ey M

One can show thalt the column asseciated with EE in the oprimal

1

tablean is a linear combination of the columns associated with
E:. T ﬂi with a zerc objective function coefficient. This

shows the existence of a nonbasic variable with a zero objective
o
function coefficient in the optimal tablean which implies nonunigquenass

of the cptimal solution.

(2) In effect, MSAE estimaticon in the presence of perfact
malticollinearity will choose a maximal set of linéearly independent
regressors (whose mmmber equals the rank of X)) and drops the other
regresscrs from the eguation by setting their coefficients equal to
gerg. This is alsc one of the remedies resorted to be researchers

when confronted with perfect multicollinearity under MSSE estimation.

Example 2. Consider the following data set:

i ; z
" {

e 4
3 A
4 a
=] ig




and the regreassicon model
g BD + Box, + B:xz FE .

Hote that 3 1= 2x1+ Using the standard simplex algorithm on the
MSAE-LFZ of this model, we obtain the cptimal tableau show in

Figure 2.

The optimal solution corresponding to this optimal tablean

iz given by

T -~
En e o iy
EI = B = 4,3
R E w13
2 3 3 /
E = {]
4
ow | awt 3
5 3

wiere the Ej‘s are the MSAE regression coefficients and the 'Ei'ﬂ

are the residuals. Another optimal solution can be cbtained by pivoting

on the element %— {enclosed in a sguare) thus putting E: inta the
basis and romoving E; from the basis. This optimal sclution is given
by
k] i
ﬁu Nag By et
B e = 4753
51 = 2/3 £, =
=
= = =1/3
g, = o0 £, /
. .
By = o
g = 173

tn
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This correponds to another estimate of f. 2Zny convex combination
-~ %
of the optimal solutiens (B; £) and (B; £ is aiso an optimal
&
solution resulting in another MSAE estimate, i.e., BF + (1 — B

(028 21) is also an estimate of B&.
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