Discussion Paper 830/4 April 1983

REGRESSION BY MINIMUM SUM OF ABSOLUTE ERRORS: SOME RESULTS

the english andreadly predicted by it lead A abservations (3) as

Rolando A. Danao

Elizant, Quanta Lity

Note: UPSE Discussion Papers are preliminary versions circulated privately to elicit critical comment. They are protected by the Copyright Law (PD No. 49) and are not for quotation or reprinting without prior approval.

ABSTRACT

In the multiple regression model $y = x\beta + \epsilon$, the coefficient vector β may be estimated by minimizing the sum of absolute errors (MSAE). This paper shows the following results under MSAE estimation: (1) If k coefficients $\hat{\beta}$, are nonzeros, then the estimated regression equation accurately predicts at least k observations; (2) As in the case of least squares regression, β , has an infinite number of estimates in the presence of perfect multicollinearity.

by within the the same of appared within the best approved to the

As that of electricity the second similar sector Office, Lot.

Although a Thursday was supported as far have as 1888 to

Edgeworth Teculary 17777; its own has been limited to have to

the age 1000 established on the opticised as a solution to a think

produced by the state of the st

THE MAKE EMPORABLE SHOULD BE MAKED BY INCIDENCE.

Regression by Minimum Sum of Absolute Errors: Some Results

Rolando A. Danao

1. Introduction

Consider the multiple linear regression model

$$y = x\beta + \varepsilon$$
 -maintain value variables (1)

where y is the regressand, $x = [x_1, x_2, \ldots, x_k]$ the vector of regressors, $\beta = [\beta_1, \beta_2, \ldots, \beta_k]$ the vector of unknown coefficients, and ϵ the stochastic disturbance term. The most widely used method of estimating β is by least squares, i.e., by minimizing the sum of squared errors (MSSE). Another method is that of minimizing the sum of absolute errors (MSAE), i.e., the MSAE estimate of β is obtained by minimizing $\sum\limits_{i} |\epsilon_i|$. Although MSAE estimation was suggested as far back as 1888 by Edgeworth (Bowley, 1928), its use has been limited because of computational difficulties. It was only in the 1950's that articles appeared (Charnes et al., 1955; Wagner, 1959) showing that the MSAE estimator can be obtained as a solution to a linear programming problem.

The MSAE regression problem is stated as follows:

MSAE: Minimize $\sum_{i=1}^{n} |\varepsilon_{i}|$

s.t.
$$\sum_{j=1}^{k} x_{ij} \beta_{j} + \epsilon_{i} = y_{i}, \quad \text{a closed in } i = 1, 2, \dots, n.$$

where x_{ij} is the ith observation on the jth regressor.

To transform this into the standard form of the linear programming problem, we introduce the positive and negative parts of a variable v of arbitrary sign by letting

$$v^{+} = \max_{v} \{0, v\}$$
 because of all v are the second of $v^{-} = \max_{v} \{0, -v\}$ and $v^{-} = \max_{v} \{0, -v\}$

Then i sersupe send of it by losse squares to bodies born whole

by minimizing the arm of squared errors
$$v = v^{-1} \cdot v^$$

Thus, the MSAE problem can be restated as follows:

MSAE-LP1: Minimize
$$\sum_{i=1}^{n} (\varepsilon_{i}^{+} + \varepsilon_{i}^{-})$$
s.t.
$$\sum_{j=1}^{k} x_{ij} (\beta_{j}^{+} - \beta_{j}^{-}) + \varepsilon_{i}^{+} - \varepsilon_{i}^{-} = y_{i}, i = 1, 2, ..., n.$$

evolution as because if
$$\beta_j^+$$
, β_j^- , ϵ_i^+ , $\epsilon_i^- \ge 0$.

If we set

$$u = [1, 1, ..., 1]$$
 (an n-vector)
$$\beta^{+} = [\beta_{1}^{+}, \beta_{2}^{+}, ..., \beta_{k}^{+}]^{+}$$

$$\beta^{-} = [\beta_{1}^{-}, \beta_{2}^{-}, ..., \beta_{k}^{-}]^{+}$$

$$\epsilon^{+} = [\epsilon_{1}^{+}, \epsilon_{2}^{+}, ..., \epsilon_{n}^{+}]^{+}$$

$$\epsilon^{-} = [\epsilon_{1}^{-}, \epsilon_{2}^{-}, ..., \epsilon_{n}^{-}]^{+}$$

$$y = [y_{1}, y_{2}, ..., y_{n}]^{+}$$

$$x = \begin{bmatrix} x_{11} & x_{12} & ... & x_{1k} \\ x_{21} & x_{22} & ... & x_{2k} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & ... & x_{nk} \end{bmatrix}$$

then the MSAE problem can be written in matrix form:

MSAE-LP2: Minimize
$$u^*\epsilon^+ + u^*\epsilon^-$$

$$s.t. x\beta^+ - x\beta^- + I\epsilon^+ - I\epsilon^- = y$$

$$\beta^+, \beta^-, \epsilon^+, \epsilon^- \ge 0.$$

Remark: It is clear from the constraint of MSAE-LP2 that the coefficient matrix has rank n. Consequently, a basic optimal solution has n basic variables. If k_1 of the β_j 's are basic variables in an optimal solution, then there are k_1 of the ϵ_i 's that are nonbasic; hence, at least k_1 of the ϵ_i 's equal zero, i.e., the MSAE regression hyperplane passes through at least k_1 sample points. The implication for

prediction is that the MSAE regression equation can accurately predict historical data in at least k, out of n cases.

Example 1

Consider the data set:

У	1	3	2	3	4	5	4	5	5	6
x	1	2	3	4	5	6	7	8	9	10

whose scatter diagram is shown in Figure 1.

Visual inspection of the scatter diagram indicates that the intercept and slope of the regression line

$$y = \beta_1 + \beta_2 x + \varepsilon$$

are nonzero, i.e., $\beta_1 \neq 0$, $\beta_2 \neq 0$. The preceding remark says that the MSAE regression line must pass through at least two points. The results of the MSAE regression done by linear programming confirms this as shown in Table 1 and Figure 1. In fact, the MSAE regression line passes through three points labeled A, B, C. The MSSE regression results are also shown for comparison.

has a basic variables. If k, of the 0,'s are basts variables in an optimal solution, then there are k, of the c₁'s that c₂'s that are normalical because at least 2, of the c₁'s equal zero, i.e., the mad requestion by surplane passes through at least k, sample points. The inclination for

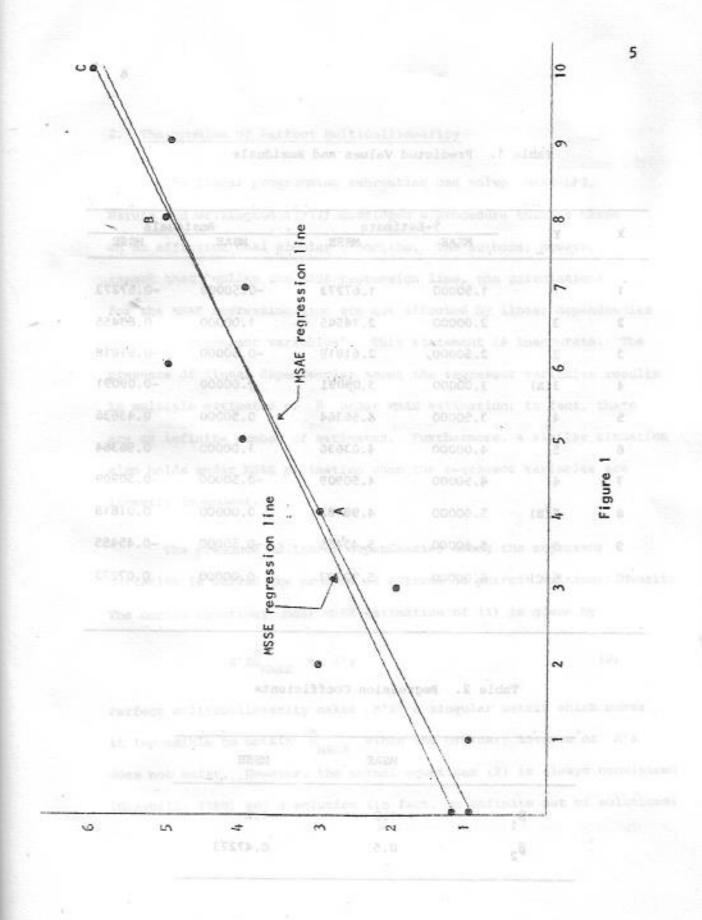


Table 1. Predicted Values and Residuals

x	Y	Y-Es	timate	Resi	duals
		MSAE	MSSE		MSSE
1	1	1.50000	1.67273	-0.50000	-0.67273
2	3	2.00000	2.14545	1.00000	0.85455
3	2	2.50000	2.61818	-0.50000	-0.61818
4	3 (A)	3.00000	3.09091	0.00000	-0.09091
5	4	3.50000	3.56364	0.50000	0.43636
6 _VI	Š	4.00000	4.03636	1.00000	0.96364
7 🖁 -	4	4.50000	4.50909	-0.50000	-0.50909
8 🖫	5 (B)	5.00000	4.98182	0.00000	0.01818
9	5	5.50000	5.45455	3-0.50000	-0.45455
10	6 (C)	6.00000	5.92727	0.00000	0.07273
			- //	-8-	

Table 2. Regression Coefficients

	MSAE	MSSE
β1 /	1.0	1,2
β_2	0.5	0.47273

2. The Problem of Perfect Multicollinearity

Narula and Wellington (1977) developed a procedure that is based on an efficient dual simplex algorithm. The authors, however, remark that "unlike the MSSE regression line, the calculations for the MSAE regression line are not affected by linear dependencies among the regressor variables". This statement is inaccurate. The presence of linear dependencies among the regressor variables results in multiple estimates of β under MSAE estimation; in fact, there are an infinite number of estimates. Furthermore, a similar situation also holds under MSSE estimation when the regressor variables are linearly dependent.

The presence of linear dependencies among the regressor variables is called the problem of extreme or perfect multicollinearity. The normal equations under MSSE estimation of (1) is given by

and the same of the total

$$X^*X\hat{\beta}_{MSSE} = X^*Y$$
 (2)

MEAN-122 has an optimal solution.

Perfect multicollinearity makes X'X a singular matrix which makes it impossible to obtain $\hat{\beta}_{MSSE}$ since the ordinary inverse of X'X does not exist. However, the normal equations (2) is always consistent (Graybill, 1969) and a solution (in fact, an infinite set of solutions)

for $\hat{\beta}_{MSSE}$ can be obtained by using the generalized inverse of $X^{\dagger}X$. The general solution is given by

Any linear programming subrougine can solve MSAE-122.

$$\hat{\beta}_{MSSE} = (X^{\dagger}X)^{g}X^{\dagger}y + [I - (X^{\dagger}X)^{g} (X^{\dagger}X)] z \qquad (3)$$

where (X'X) g is the generalized inverse of X'X, I is the identity matrix, and z is an arbitrary vector (Graybill, 1969).

on an efficient doal simplex algorithm. The authors, however,

We now show that in the presence of perfect multicollinearity, the estimate of β under MSAE estimation is not unique, i.e., MSAE-LP2 has an infinite number of optimal solutions. It is clear that MSAE-LP2 has a feasible solution given by

$$\beta_j^+ = \beta_j^- = 0, \qquad j = 1, 2, \dots, k;$$

$$\text{ nonunform at pose estimated to entropy out to be said the value of the position o$$

Moreover, the objective function is bounded below by zero; hence,
MSAE-LP2 has an optimal solution.

For expositional convenience, consider the case where a column of X is scalar multiple of another column. Let β_1 and β_2 be the coefficients of the linearly dependent regressors x_1 and x_2 , respectively. Then, in MSAE-LP2, the variables β_1^+ , β_1^- , β_2^+ , β_2^- have zero coefficients in the objective function while the columns associated with them are pairwise linearly dependent. Suppose that β_1^+ is in the basis of the optimal solution obtained by the simplex algorithm. Then β_1^- , β_2^+ , β_2^- cannot be in the basis since this would violate linear independence of the basis vectors. The portion of the optimal tableau (in canonical form) corresponding to these variables would look like the following:

Basic Variables		β ₁	β ₁	β ₂ ⁺	β_2	5	Right Hand Side
Objective Function Row	0.00	0	0	0	1,0,1	11.7.70	b _o
		0	0	0	0		
Transpass Sallers		Belve	rno el l'	nies I	ATTENNA	g belT	(1) ratzwasii
β bo IIA	on in	101	-1	Ct.	-α	W	1× > × β+
uli edi stalciv s		0	0	0	0		will appear a
				:	:		socstavječni

A or h, in the bants, suplanting h, which now becomes lave

that the associated retresents -x are linearly

independent. Moreover, them is a nombesic variable of vicas

where $-b_0$ is the optimal value of the objective function. The column vector associated with β_1^+ is the unit vector since β_1^+ is in the basis. The other column vectors follow from the fact that they are scalar multiples of the vector associated with β_1^+ . Note that β_2^+ is a nonbasic variable whose objective function coefficient is zero in the optimal tableau. This implies that the optimal solution is not unique since a necessary and sufficient condition for the uniqueness of an optimal solution is that the objective function coefficients of the nonbasic variables in the optimal tableau are positive (Simmonard, 1966). Another optimal solution can be obtained by pivoting on α (if $\alpha > 0$) or on $-\alpha$ (if $\alpha < 0$). This would put $\beta_2^{\rm v}$ or $\beta_2^{\rm v}$ in the basis, replacing $\beta_1^{\rm v}$ which now becomes zero. The new optimal solution has $\hat{\beta}_1^{\rm v} = 0$, $\hat{\beta}_2^{\rm v} = \frac{\beta_1^{\rm v}}{\alpha}$ (if $\alpha > 0$) or $\hat{\beta}_2^{\rm v} = \frac{\beta_1^{\rm v}}{\alpha}$ (if $\alpha < 0$). Since the set of optimal solutions is convex, it follows that there are infinite number of optimal solutions.

Remarks: (1) The general case is proved in a similar manner. If rank X < k, then in the optimal solution, not all of the β 's will appear as basic variables since this would violate the linear independence of the basis vectors. Suppose that β_1^* , β_2^* , ... $\beta_{k_1}^*$ (where $\beta_j^* = \beta_j^*$ or β_j^-) are in the optimal basis. This implies that the associated regressors $x_1, x_2, \ldots x_{k_1}$ are linearly independent. Moreover, there is a nonbasic variable β_2^* whose

associated regressor \mathbf{x}_{0} is a linear combination of $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k_{1}}$. One can show that the column associated with β_{k}^{*} in the optimal tableau is a linear combination of the columns associated with $\beta_{1}^{*}, \ldots, \beta_{k}^{*}$ with a zero objective function coefficient. This shows the existence of a nonbasic variable with a zero objective function coefficient in the optimal tableau which implies nonuniqueness of the optimal solution.

(2) In effect, MSAE estimation in the presence of perfect multicollinearity will choose a maximal set of linearly independent regressors (whose number equals the rank of X) and drops the other regressors from the equation by setting their coefficients equal to zero. This is also one of the remedies resorted to be researchers when confronted with perfect multicollinearity under MSSE estimation.

Example 2. Consider the following data set:

У	x ₁	x ₂
1	1	2
3	2	4 6
2	3	6 174
3	4	8 0
4	5	10

and the regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$
.

Note that $x_2 = 2x_1$. Using the standard simplex algorithm on the MSAE-LP2 of this model, we obtain the optimal tableau show in Pigure 2.

The optimal solution corresponding to this optimal tableau is given by

$$\hat{\beta}_0 = \frac{1}{3} \qquad \hat{\epsilon}_1 = 0$$

$$\hat{\beta}_1 = 0 \qquad \hat{\epsilon}_2 = 4/3$$

$$\hat{\beta}_2 = \frac{1}{3} \qquad \hat{\epsilon}_3 = -1/3$$

$$\hat{\epsilon}_4 = 0$$

$$\hat{\epsilon}_5 = \frac{1}{3}$$

where the $\hat{\beta}_j$'s are the MSAE regression coefficients and the $\hat{\epsilon}_i$'s are the residuals. Another optimal solution can be obtained by pivoting on the element $\frac{1}{2}$ (enclosed in a square) thus putting β_1^+ into the basis and romoving β_2^+ from the basis. This optimal solution is given by

$$\hat{\beta}_0 = \frac{1}{3}$$

$$\hat{\beta}_1 = 2/3$$

$$\hat{\beta}_2 = 0$$

$$\hat{\epsilon}_3 = -1/3$$

$$\hat{\epsilon}_4 = 0$$

$$\hat{\epsilon}_5 = 1/3$$

β0+	β_0	β ₁ ⁺	β1	β+2	β_2	ε†	€1	ε2	ε2	ε*3	ε- 3	ε4	€4	ε ⁺ ₅	ε5	Right Hand Side
0	0	0	0	0	0	1	1	0	2	2	0	2	0	0	2	-2
1	-1	0	0	0	o	4/3	<u>4</u>	0	0	0	0	<u>1</u> 3	1/3	0	0	1/3
0	0	0	0	0	0	- <u>2</u>	2/3	1	-1	0	0	1 3	1/3	0	0	4 3
0	0	$\frac{1}{2}$	$\frac{1}{2}$	1	-1	- <u>1</u>	1/6	0	0	0	0	1 6	1/6	0	o .	1 3
0	0	0	0	0	0	1/3	$-\frac{1}{3}$	0	0	-1	1	2/3	$-\frac{2}{3}$	0	0	1 3
0	0	0	0	0	0	$\frac{1}{3}$	<u>1</u>	0	0	0	0	$\frac{4}{3}$	4/3	1	-1	1/3
	0 1 0 0	0 0 1 -1 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 1 1 0 2 2 0 2 0 1 -1 0 0 0 0 $\frac{4}{3}$ $\frac{4}{3}$ 0 0 0 0 $\frac{1}{3}$ $\frac{1}{3}$ 0 0 0 0 0 0 $\frac{2}{3}$ $\frac{2}{3}$ 1 -1 0 0 $\frac{1}{3}$ $\frac{1}{3}$ 0 0 $\frac{1}{2}$ $\frac{1}{2}$ 1 -1 $\frac{1}{6}$ $\frac{1}{6}$ 0 0 0 0 $\frac{1}{6}$ $\frac{1}{6}$ 0 0 0 0 0 0 0 0 0 $\frac{1}{3}$ $\frac{1}{3}$ 0 0 -1 1 $\frac{2}{3}$ $\frac{2}{3}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

Pigure 2

This corresponds to another estimate of β . Any convex combination of the optimal solutions $(\hat{\beta}; \hat{E})$ and $(\hat{\hat{\beta}}; \hat{E})$ is also an optimal solution resulting in another MSAE estimate, i.e., $\theta \hat{\beta} + (1 - \theta) \hat{\hat{\beta}}$ $(0 \le \theta \le 1)$ is also an estimate of β .

References

- Bowley, A.L. (1928). F.Y. Edgeworth's Contributions to Mathematical Statistics. London: Royal Statistical Society.
- Charnes, A., Cooper, W.W. and Ferguson, R.O. (1955). Optimal Estimation of Executive Compensation by Linear Programming. <u>Management Science</u>, 1, 138-151.
- Graybill, F.A. (1969). Introduction to Matrices with Applications
 in Statistics. Belmont, California: Wadsworth Publishing
 Company.
- Narula, S.C., and Wellington, J.F. (1977). Multiple Linear Regression with Minimum Sum of Absolute Errors. Applied Statistics, v. 26, no. 1, pp. 106-111.
- Simmonard, M. (1966). Linear Programming. Prentice-Hall, N.J.
- Wagner, H.M. (1959). "Linear Programming Techniques for Regression," Journal of the American Statistical Association.