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ABSTRALT

Glven a linear econometric model

whera v* {5 a prescribed goal wector, a linear programming
problem can be used to deétermine the existence and uniguensss of

a nonmegative instrument wvector x  that attalns the goal and

obtalin such 2 wector if It exists,

If the system y* = Jix + b does not have a solution, the
approximete solution x = (vt - b}, where T i3 the generalized
inverse of X, determines a vector ; = Mx that is as close as -
possible to v® In terms of the Fuclidean distsnce, In thiz case,
a lipear prograsming problem can also he used to detercine the
existence and uniqueness of a nonnegative approximate solution

and abtalin such 2 sslution iF it exists.



NOMNEGATIVE APPROXIMATE SOLUTIONS TO AN ECONOMETRIC
HODEL WITH PRESCREGED GOALS

folando A. Denao

The Goel Attainment Problem

From the reduced=form of & linear econometric model a

policy-maker might be interested in a subsystem of the form
¥ = 0Ox + b [I}

where y Isan mx 1 vector of goals, T isan mxn
matrix of Impsct multipliers, % s an n x | wvector of
instruments, and b is an mx ! vector of constants. if
a policy-meker prescribes his goals, say r*. hisz problem
is to find 8 Instrument vecter x° that attains his goals,

f.e,; to Tind & solution to the equerion.
Jix = x* {z}

where z¥ = y* = 5. A solution to equation {2} exists if

and only if

m- 2" = z* {3}

where N~ Iz the generalized inverse of & {Graybill [1}).

If & solution exists, then

x® - 2* ' (&)



= a solution; in general, the solution is not unigue. The

genzral solution §: of the form

x® 0 2% ¢ (] - B {5}

where | is the Identity matrix and v is an arbitrary vector

iGravbill [11, §jiri [21). A necestary and sufficient condition

for the unigueness of the solution is that I~0 = | {Graybiil

LiJl. !f a solution does not exist, the goal attainment problem

is that of finding an "spproximate sclution” % so that the

véctﬂr Y=Hx+b is 'as close as possible' to the prescribed
k

goal y~ ({1jiri [2]) or equivalently, z=y ~b is as close

as possible to 2" = y* - b,

""Closeness™ between vectors may be measured by means of
distance functlens defired on the vecter space [(Sfeir~Younis
[%3). One such distancé is the ordinary Euclidean distance
(or t -metric) defined by

E {z: - 555 {ﬁﬁ

if fx=z* hac no solution, ther an approximate sclution
with respect to the Euclidean distance Is a wector x that

minimizes di{z,z") ower all vectors z = Ix, f.e.,



Hz . z") = min diz . zi.'l' {n
Z=iix

S [
Sihce ® minomizes the sum of the squares of the deviations

befween Zy aird z‘i*, it is cailad a lsast squares scrution.

it has been shown that
=7 2 (8}

is a least squares solution to {2) (Graybiil {1J}. Hence, a
least squares sclution always exists; in gemaral, it is nok
unique. The gn.-,-r!eral. form of the Ieast squeres solution can
be sbinined by mtlng. that evary least sguares soluticn must
satisfy Ix = z and, therefore, must have the general form

(5):

x= 08" %+ {I - I"M)v
= "Bk + {1 - U"H}v
= 1°% 372" + {1~ I"E}v

w12+ {1 - T .



Bence, & npecessary and sufficient condition for the unique-

!
ness of the least squares solgrien f2 that TF = t.l

The necessary and sufficiant cnnditimﬁs-fﬂr Lo
existence and uvnigueness of solutions or of least squares
solutions, however, are sllent on the nonnegativity of these
solutions. A policy-maker's wector of fnstruments [s usually
nonnegative {e.g9., government expenditures, rax revenuve). It
would, therefore, be useful o determine if a nonnegative
solution or a nonnegative least squares solution exists and
if it does, 1o obtain such a solution. Moreover, it would
alse be useful zo know iT the nonnegative sclution cbtained
is unique or not since nonuniqueness implies the existence of
alternative instruments policies for attaining the same goal.
This paper examines these problems via a [inear programeing
problem similar to the artificial problem in Phase | of the
twe-phase simplex method. Furthermore, when multiple non-
negative instrument vectors exists, linear programs may be

used to select the desirad wector,

ifﬁy defining z = IxX, the system fx

sequantly, the selutlon x = I° %
is onigque If and enly if §=5 = 1

= % it comsistent. cnn-‘
Ellx =l z* =1 z*u &




2. Existence and Unioueness of ﬁnnnsgﬂ‘.iu Soluetions

The problem posed In Section | is that of dertermining

the feasibility of the system

()

and of obtaining & feasible solution If it exists. Without
loss of generality, we may assume that 2o >0 LI J.? < g,

multiply the Tth equatiom by ~1}.

Tha feasibility of system {3) can be determined by

using the fallowing [lnear programming problem:

LPE: Minimize ely
subject to Ex + lg =z

X,u 20

where &' Is the m-dimensional vecter of 1°s, HNote thet
LFl has a2 feasibie solutiop x=0, wu= =%, Since the
objective function is bournded below by zero, LPI has an
optimal solution. 1t has been shown that system (9) is
feasible 7€ and only If the optimal cbjective function value

of LP! is zerc (Simmonard [53}. Consequently, the optimal

simpiex tablesu of LPl will show if system {3) Is feasible




or mot and if feasible, the same tableau gives a feasible

solution.

Using LPl, we capn show the uniqueness of a feasible

solution to system (9) by means of the following theorem.

Theoram 1. If the system Ix = 2, x 20 has a feasible
solution, then it Is unique If and only if L7l has a unique

optimal sclution.

Proof: (=)

If x* is the unique feasible solution to (8}, then
[x*,0] Is an optima} =olution of LPi since its objective
function value Is zefo, which is the minfmum possible value
of LPl's cbjéctive function. Hence, every optimal sclution
[x,u] of LPI must satisfy u =0, which implies that x

is feasible in {9). Consequently, x =x*,

(==
Let [x*,u"] be the unique optimal solution of LPI.
Since system {9) is feaslble, then the objective function

value of [x*,u"] is zero. Hence, e'v" =0 ar

& * *
o "'"uz 'I‘f..'..&'l'hi

H

*Hu*ll

U, P e = 0. If % is any feasible sclutien to

= §. Since u* > 0, "it follows that

Ll |

(3), then [x,@] fs an cptimal seclution of LPl. Hence,

{1;03'[3*;“3'!}:*,‘}1 and 5o x = X.



Remark: 1t is sasy to determine whether an cptimal solution
of LPI s unique or not. This is seen from the elements of
the optimal simplex tableau when the simplex algorithm is

applied to LPI. The necessary and sufficient conditjons for

the uniqueness of an optimal solotion can be found in Simmcnard

[51].

Existence and Uniguaness of Monn Live
Least Squares Solutions

When the goals y* cannot be attainad simul taneous |y,

i.., Bx =y =b has no sclution, then we consider the set
of least squares solutions to Mix = v* - b = 7%, e may alse
use a |inear prugraming' problem to determine the existence

and uniquness of noanegative least squares solutions.

Let. X be = least squares solution te (2). Then
y o= Ix + b is as close as possible to n,.rﬂ or éguivalentiy,
I=0% Jsas close ss possible to +*. To determine the

existence of nonnegative least squares solutions, we solve

the linear programming problem:

LP2: Minimize ety

sub ject to Ox + fu= 3

Xl 20 .




A problem way arisze here. 1f x iz a least squares solution
distinct from X, then the vector =z == Ix i+ also as close
S

to z¥ as 2. Asother linear programming problem can be

formulated thus:

Hinimize e'u
subject to Ox + fu= =
xX,u=>0,

There is, therefore, the p-.u:sihi'lity of solving more than one,
possibly an Enfinite number of linear programs. But this
possibility Is ruled cut since we can show that I = z. This
follows from the fact that every least squares solutien to

any system Ax = d satisfies the equation -Ax = AA™d (Graybill

[1]. Applving this te ocur problem, we must have
- 2/

E-Eim]:ﬂ'z*nﬂiui_—

%. Selecting a Desired instrument Vector

The existence of multiple nonnegative solutions provides

the policy maker with aiternative instrunent vectors for achieving

yﬁn geometric proof of the unlqueness of 2 iz given in Simmons [5].




the ssme goali. Selecting an [nstrument vector requires a
criterion for chaice. For sxample, a policy-meker might be

particularly interested in 3 soletion in which #, iz minimum.

In this case, ke salves the linear program
Mimim]ze et
i
subject to Tx = z*
X > 0.

Another critericn could be that of finding 2 solution
In which the sum of several xi'.r. is minimum. The above
Tinear program may be used with a new cbjective, namely, to

minimize x. +X. % .. 3% .
i i i
| 2 n

The preceding remarks apply to the selection of a least
squares folution. The Tinsar ares=p= =z the same as above with

z% replaced by 2.

Numerical Exampies

Example 1.
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Since - IH y* = I | = y*, the given system of linear
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equation bas 3 sclution. One solution [s given by

i = = .E_ -
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the solutlon x* Is not unique. To find 3 noanegative

solution we solve the following linear programeing preblem:
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The eptima!l simplex tebleau is gliwen by the fal lowing table
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¥, =0, ».,=1 iz ascletion to the givern systam of
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aquet lons.
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Xy ™= i 1:.3 = 1 Is the zclution that mnielzes Fyw Xy .':3_
arvid Xy * Xy F Xy If the choice criteriom is a rormegative
colutien tha: minimices ;ur o A :"‘3 with the addid condition

that iy 4% at Jeast equal to ¥, then the desirsd sciution

Bl
1
ey
!
Py

B
I —— et et
]
1
Bt

Lt
3
i
(%]
e
————
£ |
L




|
i 2 IS | :
WG E= R LY TR I 1 (R TR th= sysfam Joas Aot
F &, T |

1AE M I | He 1 Jeaey sqdu=res selution
TLRLLEE )

—

i

The corresponding ooal vector ¥  that s as close as

possible to ¥*  is gluen By

?:u !1'-.-*. = .

_E_.
=i
]
o
——
——
£

L

e L

al
Shrce TIT % 1, xhe least squares solutien x  I€ noo unique.
Yo find nonnegative least squares sclution, we solve the [inear

pragramsiiang problap:

o

R 1] I S

Hinfml e Uy s u3

subfect to i, - x, = %y * 1y “ £.3491
HF - ."!:2 = 1.‘-'3 4 JE T Y
E . R =k . =
By T, Sy * Uy k. 1535
Kyx %y ::3, Uy Ugy Uy >0



I fol iows thar

-

5 a nonnegative least syuares sclution. The cptiml sis
tabieay also shiws that this nénnegative leasi LQUETES S0

s mep ST T T T sl e,

R T e e

5§ apather roanecative leswt Souares 80 lution.
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