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ABSTRACT

Rao's solution of the estimation equations in the maximum like-
lihood method of factor analysis is derived in this paper in a model
wherein Morrison's specific-factor variate e is replaced by GiUi
and the covariance structure, by the correlation pattern. The corre-
lation pattern is used, at times, in classifying variables according

to the criteria which are specified in section 1 of this paper.
The following innovations are recommended in this paper:

1. The use of 6? as an indicator of dependence or indepen-
dence of the ith variable'and the other variables in the
given set.

2% Thg‘application of simultaneous tests of independence among
variables having a multivariate normal distribution (see page
3) as part of the factor analysis technique (maximum likeli-
hood method) to determine the validity of the classification
of the variables and thereby solve the following problems:
a. indeterminacy due to the non-uniqueness of solutions of

the estimation equations
b. subjectivity of analysis done with or without the common
practice of rotating the factor loading matrix, as

observed by Scott

These tests may be used independently of factor analysis
in classifying variables into independent groups. This

implies the exclusion of variables which are correlated

with independent variables.




ON THE MAXIMUM LIKELIHOOD METHOD
OF FACTOR ANALYSIS®

by

Susan S. Navarro

Intrediction

Factor analysis is a study of interdependence among variables.

‘ . - 3 ; 1
Referring to its origin, development and application, Harman says:

"The birth of factor analysis is generally ascribed
to Charles Spearman. His monumental work in developing a
psychological theory involving a single general factor and a
number of specific factors goes back to 1904... Of course,
his 1904 investigation was only the beginning of his work in
developing the Two Factor Theory, and his work is not explicitly
in terms of 'factors.'! Perhaps a more crucial article,
certainly insofar as the statistical aspects are concerned, is
the 1901 paper by Karl Pearson [386] in which he sets forth
'the method of principal axes'...

Factor analysis is a branch of statistical science,
but because of its development and extensive use in psychology
the technique itself is often mistakenly considered as
psychological theory. The method came into being specifically
to provide mathematical models for the explanation of
psychological theories of human ability and behavior...

The application of factor analysis techniques has been
chiefly in the field psychology. This limitation has no
foundation other than the fact that it had its origin in
psychology and that accounts of the subject have tended to be
'...so bound up with the psychological conception of mental
factors that an ordinary statistician has difficulty in seeing
it in a proper setting in relation to the general body of
statistical method.'"
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There are numerous methods of factor analysis. Maximum likelihood

is the selected method for discussion in this paper for the following

reasons:

1. The number of significant common factors may be determined

rigorously in the maximum likelihood method.

Referring to the different methods of factor

analysis, Morrison says:

"...The various approaches are discussed
by Harman [16] in his scholarly and comprehensive
text and in summary form by Solomon [38]. While
many of the models included 'error' terms reflect-
ing the sampling variation of the observed cor-
relations, none actually used the results of

~.. the new discipline of statistical
inference. It was not until 1940 that D.N. Lawley
reduced the extraction of factor parameters to a
problem in maximum likelihood estimation and by so
doing eliminated the indeterminacies of the centroid
method. Furthermore, the goodness ' of fit of a
solution with just m factors could now be tested
rigorously by the generalized likelihood - ratio
principle."

The above mentioned test for goodness of fit

is for determining the number of significant common factors.

2. The validity of the classification of variables according to
the criteria specified in section 1 of this paper may be

verified in the maximum likelihood method, which is

2 : ; ; P
Donald Morrison, Multivariate Statistical Methods (New York:

McGraw-Hill Book Co., 1967), p. 260.




applicable to a multinormal population, by applying

simultaneous tests for independence among variables having
. . . . . 3 . p

a multivariate normal distribution. These tests determine

whether or not each variable is independent of each of the

other variables in the set.

In practice, conclusions about the classification of
the variables are drawn from the values of factor loadings

as discussed in section 2. The validity of conclusions is not

L
L

tested statistically. Scott says:

"Those familiar with factor analysis can
observe the factor loading matrix A and make some
subjective analysis of the data based on the factor
loadings themselves. When there are more than three
factors extracted, however, it becomes difficult
even for the experienced factor analyst to draw many
; conclusions from the original factor loading matrix.
‘ Many factor analysts therefore make a rotation on

the matrix A...the main advantage of rotation of
} factor loadings with an orthogonal matrix is in
\

o
)

t

subjective analysis of the factor loadings themselves.®

=
J
| Oster says:

‘To date, there exist no precise sampling
error formulas for factor locadings. Approximate
procedures, however, were developed by Holzinger
and Harman (1941) under certain simplifying
assumptions.

o]
“Donald Morrison, Multivariate Statistical Methods, Chapter 3.

L . . s . - .
John Scott, Jr. "Factor Analysis and Regression,' Econometrica,
34 (1966), 557 and 558.
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Gerry Oster, "A Factor Analytic Test of the Theory of the Dual
Economy, The Review of Economics and Statistics, 61 (1979), 35.
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The e

into m (representing the number of common factors) groups

xclusion of a variable from the classification

R

implies that the variable is considered independent of the

other variables in the set. The above mentioned simultaneous

tests are useful in identifying these variables and consequently,

determine the insignificance of the loadings concerned.

discussion in this paper is divided into 5 sections. The

criteria for classifying variables through factor analysis are specified

in section

likelihood

1. The properties of the factor analysis model (maximum

method), which may help in understanding its uses, are

discussed in section 2, The following are the differences between the

model presentéd in this paper and the maximum

likelihood model which

c
[

o]

Morrison's specific-factor variate e, is replaced by

=

GiV. in this paper.
i'i

The important role of &. as an indicator of
independence or non-independence of the ith variable and
the p-1 other variables jig discussed in section 2. The
variance of e in M

between the variance of the ith variable and the sum of the

squares of the loadings of the same variable with each of

m common factors.

6 __
Donald

lorrison, Multivariate Statistical Methods, Chapter 8.

Morrison's model is simply the difference



2. Morrison's model explains the covariance structure; the
model in this paper shows the correlation pattern among the
p variables. The difference is caused by using the

standardized value of Yj - -

in (2.1) instead of the deviation of Y. from its mean,

as Morrison does. There is then a difference in the scales
of. the response variates. Morrison proved the following,
called the invariance property of the maximum likelihood

loading estimates:

'"Changes in the scales of the response
variates only appear as scale changes of the
loadings. In particular, the loadings extracted
from the correlation matrix differ from those of

he covariance matrix only by the factors

Ty . o : - . :
This statement is valid if s, , instead of o , 1s used in
i

Yi

determining the standardized variate X. . Otherwise, the loadings

" 1 . 1 : _
differ b — instead of = _as shown in footnote number 14. In
Q 2 S ’
. i
yl
practice, g, is usually unknown.




In section 3, the invariance property is used to show that

Morrison's estimation equations mav be used to determine the solutions

of the model in this paper.

The estimation equations are presented in section 4. The results
T ; : . ‘ 8
indicate that the solution is not uniquely determined. Harman and

y 9 .. . .

Morrison~ did not present the proofs of the derivation process due to
extensive algebraic manipulation and relatively higher mathematical
level of discussion, respectively. Harman's estimation equations,
which are different from those obtained in this paper, are for Lawley's
iterative method for determining the factor loadings. The proofs of

the derivation process are presented in Appendix A.

Morrison discussed - without progf - the mathematical foundation

. 10 . . . :
of a different method, RaO's iterative solution. Morrison's formulas,
transformed into the system presented in this paper through the
invariance property of the loadings, are discussed in section 5. The

derivation of these formulas is Shown in Appendix B.

8Harry Harman, Modern Factor Analysis, pp. 214-217.

9Donald Morrison, Multivariate Statistical Methods, pp. 264-267.

10

C. Radhakrishna RaO, "Estimation and Tests of Significance in
Factor Analysis," Psychometrika 20 (1955), 105-106.




1. The Procblem

A set of variables may be classified such that

1. those variables that are highly intercorrelated are in the
same group and

2. variables that are in a group are independent of the variables
that are not in the same group. Variables which belong to more than one
group are not independent of the variables - which are in different groups -

with which they are highly intercorrelated.

Factor analysis may be used to determine the classification in this

case.

2. TFactor Analysis Model

(Maximum Likelihood Method)

Given the following variables

which are measured from the n elements of a sample from a given

population. Let
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where H = E (Y.) and
Yy ]
]
’ E Ly F
o = B -y
; ) A
yj ] Y5

m
(2.1 X, = o. F + §.0. =21, 2, ses )
) j kzl jk Tk 77 E ’ » P

where each of the standardized variables X. is expressed linearly
J

in terms of m (usually less than p) common factors Fk’ k =4, 25 assey M
. 1 L I
and a unique factor Uj. u{], which is called a "loading,' and 6ﬁ
] J

2
are population values and are estimated from a given sample. §. is
’ ) ]

referred te. as '"uniqueness.”

The main problems in factor analysis are:

1. to estimate o. and 6.
jk )

; o o - 12
. to determine the number of significant common factors

3. to test the independence of those variables which are

13

classified under a group from those which are not in the same group.

1d . : ; i ,
In some models, X. 1is replaced by ;j B Yj ~ UV
in equation (2.1). Note that E(Qj) = 0. For éxampia, 3

see Donald Morrison, Multivariate Statistical Methods, p. 261.

12 . ;
Harry Harman, Modern Factor Analysis, pp. 219-221.

1

< [ . . .
This is a recommendation in this paper. The suggested tests
are specified in footnote number 3.




A variable may be classified, together with other variables, under a

common factor or as a single element under a unique factor. The manner

£

of classification is discussed in pages 13 and 1u.

Assumptions

1. Y. 1is normally distributed with mean u and variance
) My
]

» «++: p. Consequently, X X L Xp’are normally

4% =98

distributed with zero means and unit variances.

2; FE Fo.5 ewss £ 5 U U s ssey U are mutually stochastically

independent, normally distributed random variables with zero means and

unit variances.

Notation for Matrices

The following symbols will be used in this paper:

Matrix
Order Definition
Population Sample
) = (qu) S = (Sj ) P XD covariance matrix
]9
p = (Oiq) R = (rjc) p XD correlation matrix
1
A = (a*k) A = (a.k) P X m matrix of common
’ I factor coefficientg
2 2 . ; =
§ = (63) D = (d3) P XDP diagonal matrix of
1 . uniquenesses
Q@ = (8.) P XD diagonal matrix of
L square roots of
| uniquenesses




o L
Properties of the model
1 aj“ is the correlation coefficient of X. and Fq.
q
Proof:
R E (X.F)-E(X,) E(F)
pX,F - J g J g
J q GX. Or
J |
= 5 [} a. F_ +6.U.]F
k=1 k k J ] ]
= E[a.,F.F + a. F.F + + a, FF + o F ]
[ j1 1 g ]2 l)ln, 1q q jmm q
+ E [6.U.F ]
7 3 q
= O,
19
14 . . . ! ’ g
If Q., instead of X., 1is used in equation 1 then
] | 1
‘ J m
Y a o'
: ol 8t | k%.l jk gk
UQ F = 39 Ca U = —1- . %0.q =
i q GQ ] GQ, ] q OQ ‘7]
" |
, 2 T 2 >
and o] = Z ol + 6"
Q5 K ]
note that a. = 0
Q V4




Eyooft
Px.u.
J 3]
3 TT
Proof:
Px.u
7 t

is the

E (X.U.) - E (X.) E (U.)
J ] ] ]

X. U,
J ]
m
= [} a. F +8.0.]0U.
k=1 Ik 1 I
m
= E y. F. U, E [68.1
[1<Z1 @ By ]+ F [&jd

then X. 1is

E (X.U ) - E (X.) E (U))
] t ] t
g r
X Ou+

correlation coefficient of

uncorrelated with
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4. The correlation coefficient of Xj and
m
21 ij aqk
Proof:
E(X.X ) - E(X.) E(X )
Py ¥ = i ] :
4 %, Yy
] q
m m
= E F. o+ §.U ) F
[u;] U Fie * 85 -] [!/; %k Fx
m &
= E[) a, a, F°] + L[S.s Uu. u
‘kgl jk Tqk k] q 3 J

The model consists of the following set of

a factor pattern:

1 11 1 12 "2 Im m
E F. + F_o+ . . .+ F + 6
%2 @1 %1 T O 5 Yom ‘m T 92
X = o F, +a . F_ + . + Qo F + 6
P pl 1 p2 2 pm m

X is
(o]

)|

equations, called
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with the following properties:

1. In each of the equations in the pattern, the coefficient of
a factor is its correlation coefficient with the variable in the given

equation.

2. A unique factor U. is uncorrelated with all the variables
J

where k # 7.

X

(1
AN
(o
>

4, The correlation coefficient of X. and X is

011 k aqk

TZ‘I!

k=1

5. The common and the unique factors are uncorrelated among

themselves.

In practice, researchers classify X_i under Fk 1€
max (|aj1§) [an‘“ o % % 5 ‘djml) = | jk[

and lhjkl is not too small. All those variables which are classified

under the same common factcr Fk are considered as belonging to the same

1 : oy
group. If X 1is also classified under Fk then

For example, see Emmanuel Velasco, "Span of Control: A Comparative
Analytic Approach,” The Philippine Review of Business and Economics, 10
J - 3 > ]

(1973). The principal component method is used in this paper. The
resulting factors are then rotated by the use of the varimax-method to
arrive at an orthogonal multiple factor solution.




1y

- -~ ~ ~ ~ A -~

2 1 :
max (Iajlaqlla |aj2aq.2l, I lajmaqml) ‘ajkaqkl'

-~ A

For Iujkaqk! to be at least 0.49, which is less than of the

N -

-~

maximum absolute value of a correlation coefficient, each of |a and

should be

|aqk| should be at least 0.70. If ‘ajk’ is 0.9 then |a

-~ ~

o il

qk‘

at least 0.6 for to be at least 0.54. The terms in

m . a
o which may differ in signs, determine the estimate of the

kep 3k Ak’

population correlation coefficient of Xj and Xq. We have shown
that the loadings may be used to formulate hypotheses regarding the
classification of variables into groups, which implies non-zero
population correlation coefficients of those belonging to the same
group.

A

= m
2 3 .
If §. 1is very close to 1 then Z 62 is very close to O.
] k=1 JK
Consequently,

"~ -~

= 1, P i+ o 2 ®

% Bak® 9 1, 2, , 3-1, 341, > P
L}

is expected to be small. Xj is then classified as a single element

under the factor Uj' The independence of Xj from the p-1 other

variables in the set may be hypothesized.

: 16 . . . ;
The tests of independence among variables in a multivariate

normal population should be used to determine the validity of the

6 . 5 . .-
See Donald Morrison, Multivariate Statistical Methods,
Chapter 3.




classification of the variables according to the criteria specified in
section 1. Variables that should belong to more than one group, because

they are highly correlated with independent groups of variables, may be

identified through these tests.

3. The Invariance Property of the
Maximum Likelihood Loading Estimates

A proof of the invariance property of the maximum likelihood
loading estimates may be deduced from footnote number 14 and the

corresponding derivations in section 2.
In Morprison's model,

(3.1) v(Q.) = )} a + V(e.).

(3.2) 1 = Z ol 4+ J

by the invariance property of the loadings. We note that V(Qi) =0 .
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In our model,

m . 5
(3.3) V(X.) = 1 = as, o+ 8%
] }:)1 ‘]“ ]
(3.2) and (3.3) imply that
V(e.) ¥
2 | i 7
(3’ ’J) \S, = —-—)J—‘ = r\] '}1
] o o
ys y.
] ]

We have shown that Morrison's estimation equations may be used to deter-
mine the solution of the model

in this paper.

Estimates of

Factor Loadings

The likelihood function of the sample covariance matrix § is
defined by Wishart's distribution function

1S

. (e1-1/2 (n-1) _1/2 -p-2) n-1 -1

£s) = x|z|7V s1/2 (n-p exp (- —5— trl S)

In terms of logarithms,
I SO 1 N 1 ) n- -1
In f(S) = 1n k - 5 (n-1) 1n |Z| + 7—(n-p—2) in S - —— trk )

which may be simplified as follows:

7 :
Morrison defines V(ej) as Y

.o

]




= in |M' o+ 8
where Q is a function which
The maximum likelihood

by imposing the conditions tha

oL
90 .
]

oL

quk

Hh
|
1]
(=

v

e

0
D

equation (4.2) may be written

the solution is

not unique.

LI

1 S

es

+

timates

+

independent of

of the loadings obtained

are

ISR | P—
are as follows:

“Lg .
=1 ’ 2 & ¢ & % P and
k=1, 2, . . . , m then

the estimation

Consequently,

,‘.‘h:if' ((,;).




ig

4

(4.3 S &7 A (T+A &7 N7 = A or
(4.4) (s-8) & A = A @A & D

Premultiplication of both sides of (4.4) by ﬁ "~ yields
R I R I

(4.5) Q™" (s-3) &

5. Ral's Iterative Sclution
of the Resulting Maximum Likelihood Estimation Equations

In section 4, we showed that

/\,._1 A A A A A ~ A _1 A
(4.5) ! % Y 8t A - 8t RG 8D,

§~1

—>

; . i . 20 S
If A is a diagonal matrix then the characteristic

a=1 A ~n-] . : )
roots of Q ~ (S-8) Q are equal to the successive elements of

A ’\,”‘1 A Pt |

A" &S A and hence the ith column of

Ao is merely the

characteristic vector corresponding to the ith largest root of

A

A=l , 4 ~~1 A )
Q (S-8) Q ~. The elements of § are also unknown and may be

AA

estimated from the equation § = diag (S-AA').
20 . & A=1 - . ‘ . .
If A' & A is a diagonal matrix than

qr

Q
N R

(IR
O

if s # r.




Numerical Solution of the Estimation Equations

: , : 2
The iterative process follows this plan: 4

(a) Compute the greatest characteristic root qu and its vector

alO of § , where the elements of the vector have been scaled such that
310 210 T %4p-

(b) Approximate the specific variances from

~
o) = diag (S - a a
0 = 10

where in the sequel the subscripts i, § of & and a will denote the
jth iterates of the i-factor solution.

(c¢) Form the matrix

and extract the vector a

ssociated with its greatest root §

a4 11°
Scale the elements so that ail 2494 %11 and premultiply the vector
by ﬁlO to obtain the first approximation All to the single column
of A1
(d) Compute
A A ~
= diag S - ) )
844 fag (S - Xy AQy)

A
and repeat the process for the second approximation to A.. Continue in

this fashion until the corresponding elements of the successive iterates

21, . .
. This 1S patterned after the presentation of the iterative process
in Donald Morrison, Multivariate Statistical Methods pp. 271-272 ‘
> UlC 95 [ . pa 4=4L 4

—
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do not differ by more than some predetermined amount.

Xii and Al

, 1+1
~ B . » . .y
The resulting column vector A, %ill contain the maximum likelihood

estimates of the loadings for the one-factor model.

To obtain the estimated loadings of the second, third, ..,, mth

factors:

[
0]

N N
(e) Compute the residual matrix S = S - A A of the sing

factor solution.

(f) Compute the greatest characteristic root 2“0 and its vector
&

of Sl’ where the elements of the vector have been scaled such

] =
3y g T ¥ 3y

42

that is taken as the initial approximation to

the loadings of the second factor.

vector

=
o]
He
+
=
ol
—

(g) From the single-factor solution and the new

form the px2 matrix
A = [A1 a. ]

20

for the zero order approximation to the estimated loadings of the two

(h) Approximate 6, from
i 0

3 = diage — /f\ R

620 tiag (S 20 M0 )
(i) Form the matrix

o 1 (s-8) Q -1

*20 >~ %07 20




and extract the first two of its largest characteri

L Compute the characteristic vectors, a and asqo corresponding

21°

to £ and &, respectively. The elements of these vectors have

scaled to the usual loading form. It is essential to note that %41
¥ 8

solution.

not equal to the first iterate a,, of the single

(3) Premultiply [all dvl] by ,, to obtain the first
N

approximation A_, to the loading estimat of the two factor model.
L4

A
Repeat the process until all the elements of the iterates A,. have

onverged with specified accuracy to the two factor solution A, .

~
CC

The solution of the m-factor model begins in like manner from

(m-1)-factor solution: those latter estimates provide the starting

values for the. m-1 factors of the new model,

been

C

[
12}

he

vector is found from the characteristic vector of the greatest root of

S = S - |
m-1 Km~1 Am~1

>

The iterative proce repeated until the elements of A = A have

converged with appropriate accuracy.




Appendix A

The likelihood function of S is defined by Wishart's distribution

function as

exp (- B tr E——l

-1/2 (n-1) _ 1/2 (n-p-2)
5 2

£(s) = K |z} S).

In terms of logarithms,

In £f(S) = 1n k - % (n-1) 1n IZI + % (n-p-2) In S

which may be simplified as follows:

L =- E%T In £(8) = 1n |Z| + tr s s Q

In |RA* + 8] + tr (AA' + 8) L g + Q

11}

where Q is a function which is independent of I.

The maximum 1likelihood estimates of the loadings are obtained
by imposing the conditions that
oL SL

75 TR s j =1, 2, ....., p and
J jk

The resulting equations are given in theorems A.1 and A.S5.

Theorem A.1

If $2-=0, (j=1,2, ...., p) then
J




diag 7Y = diag s,

Proof:
) R S 1 01 -1 3z -1
T 1 e T P T S I
3 ] 3
26.0jj
(a.1) 2L - ] - tr 51 (26. T.) s ts=0

asj [Z] i 33

where o]]

is the cofactor of the jth diagonal element of I and Tjj is
the pxp matrix with unity in its jth diagonal position and zeros else-

where. We note the following:

odd . th -1
(a) T is the j diagonal element of I
(b) Z-l T:; = the pxp matrix all of whose elements are zeros

13
except the jth diagonal element which is equal to

Ji3
=T

(c) Since S and 2‘1 are symmetric then Z—l S =8 2_1

- : ; - -1
(d) tr Z Tjj sz - the jth diagonal element of % ! S I,

Therefore, (A.1) implies that

-1

(A.2) diag (2‘1) = diag (z1sg ).

The derivative of the likelihood function with respect to ajk follows:

aL 1 3z] -1 3z -1
= - tr I z
aajk z] Bajk aajk

(A.3)
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The second term in the differentiation of L is obtained by

differentiating tr X_l.

. : 1
In theorem A.2, we shall show that the pPm expressicns in TET %LEL
a

1

can be expressed a8 2 I~ A. The pm o

expressions in tr I s=— I ~ S can
a,
jk
P sed ) ~1 -1 — . . 9 e
be expressed as 2 I "g ¢ A. This statement is proved in

theorem A.4.

By applying theorems A.2 and A.4, we shall prove in theorem A.5
that the pm equations 5§£_ = 0 imply that S r 1 A.
jk
Theorem A.2

The pm~expressions T%T- %%El, j =1, 2, ,» pand k = 1, 2,
_13k
.» M, can be expressed as 2I "A.
Proof:
11 12 1p .
o} o O o %y 12 * -
021 22 o?p o 5 "
¢ = 21 %22 ¢ v %o
-1 2
21 A =
e IZ
pl  p2 PP
o o e« ¢ » O apl ap? o o » apm
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ik j '
where 0J = ckj = the cofactor of ij = the cofactor of okj' Therefore,
. .th th g o o B P qQj
the element in the j row, k column of 2I A 1is TET‘ qél aqk g,
On the other hand,
r r_.., r
lz| = z (-1) (M1 72 p] o o . O
B P - 1r1 2r2 pr
172 ° P P
where Py T, ... rp is a permutation of the numbers 1, 2, ...., p.
[rl Py ee rp] is the number of inversions in the permutation of the
numbers 1, 2, ...., p. An inversion occurs when a larger number
precedes a smaller number. Therefore,
alz] _ 1j i1 Pj ip
= o
3“jk A a5, © + alk o - + apk o} + apk
- 13 2] P]
Qalk o + 2a2k o + + 2apk o
or
P :
i BIZ' = 2 z o o - the element in the jth row, k
H By ] q=1 Tk

column of 2 £ ~ A.

The following theorem will be used in proving theorem A.4 which

simplifies the second expression of equation (A.3).

Theorem A.3

2_1 S Z-l is symmetric. r &
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Proof:
P P .
(a.4) L 5§ o9 g K
|Z|2 r=1 q=1 qr
is the element in the jth row, K Ty o £ 82—1. Since S is
symmetric then Sqr = Srq' Also o3P = % and ork = okp. Therefore,
(A.4) may be expressed as
P p
1
(A.5) —— I . oF s oD
|Z|2 Q=1 r=1 rq
(A.5) is the element in the kth row, jtn column of 2_1 52_1, Therefore,
™l sr7? s symmetric.
Theorem A.u4
. -1 oL -1
The pm expressions, tr I e L S, can be expressed as
jk

elements of the matrix 22-1 82—1 A.

Proof:
- -
0 0« o o &lk . e e 0
_9°r . 5 20 a
aajk 1}( - L . jk' L] » pk
0 o , apk N ¢
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is a symmetric matrik with zeros in all positions except those of the

.th
j row and column.

: - ) . .
Since L 1, S and o are symmetric matrices then
jk
tp 31 -gi £ lg=ztrrlsgzt 2“ =
k %5
.« . e o o 0
c11 c12 c1p 0 Lo
Coqg  Cpp v v c2p : . . .
- . . . . . . a . e .'20.. e » o O
(A.B) tr 1X ik Pk
c c v e s C 0 ... .« & 0
pl P2 PP pk
L 4 L -

: . . - -1 -1
where c_q 1s the element in the jth oW, qth column of E ST .
]
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(A.6) may be expressed as

— -

Clj alk « w @ q

Mo

C + . - L] - L J .
1 1q Oqu Clj a]k Cl] ctpk

0
L J

L ]

»

- o

0
R
+
0
Q

1 “2q %qk T 29 %k * * ¢ ©25 %k

(A.7) tr I

P
e o o o L c o] +c.0oa, ., ,Cc ., qQ
pj 1k Q=1 'pq gk qj Jk P pk
p
T Cc,. Q +c . a ¥ o0 o ¥ L €, 0O +c..0,, + . ..%+cCc . 0.
1j 1k 2] 2% Q=1 jq gk i1 Jk P] Pk
X -1 -1 . . _ .
Since I ~ S I ~ is symmetric, then g = qu Therefore, (A.7) is
equal to
2 cjl alk + 2 ?j? a2k * 5 o« o T 2 cjp apk’

the element in the jth rOowW, kth column of 2 ¢ A = 2 Z—i S 2-1 A.
Theorem A.5

aL )

If 0, €3 = 1; 25 seusi , pand k = 1, 2, , m), then
a0 .
jk
Sz 1A= A
Proof:
(A.8) —=— = I;I glzl -ttt 2ol
Y3k ik Tk
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Applying theorems A.2 and A.4, we get

R il W Yk U kR W
aa .
jk
or
A—l ~ ~
(A.9) SETA = A

(A.9) will be used in combination with (A.2) to get the estimates.

The maximum likelihood estimation equations have been derived

in theorems A.1 and A.5. In the following theorem, we shall show that

these equations imply that

diag (S).

diag ( )
Theorem A.6

diag ( £ )

1]

diag (S)
Praoof:

In theorems A.1 and A.5, we showed that the maximum 1ikelihood

estimates of the loadings should satisfy the following conditions:

. A % -
(A.2) diag (™) diag ( . szt ) and

>

A_l A

(A~9) S I A = A.




Pre- and post-multiply (A.2) by

diag (
diag (
diag (
diag (

™

™

- AN

A A

S Ik

A A!
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6§ =I - AN to get

™
[
=
S
N
]

) I (

A_l A A A A A_l a A A_l A_l A A

AN - AA' X S + AA I S Z AAND)

Simplifying the terms on the right side of the equation by applying

(A.8), we get

diag (

diag (

or

~

z

S

(A.10) diag ( E )

Theorem A.7

Theorem A.7

Proof:

™

>

>

>
>
>

-~ A A

1
A" + AA' I AN ) =

- 2 A
- 2AA + AA' X AAY )
= diag (S).

may be used to obtain (A.11) and (A.12).

-+
o)
N’
{
=
1]
-
1
-
~~~
o>
-+
=
=
Nt
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-~ A-l -~ a1 ~

(T+A" 87 A) A8

(x+A 81y 87yt

"

-1 e |

) AT+ A 8§17t

Using Theorem A.7, we can transform A.9 into

A-l S ~ A_ - _ A
A1) S8 A +a s )y s A op

-~

A = AN s n).

(A.12) (s - §) &1




Appendix B

Theorems B.1, B.2, and B.3 are used to prove theorem B.4, which

is stated in section 5.

Theorem B.1

sTLat +a s )Y - 5+ aant g

Proof:

-1

A=I A = (I +AA 83T +an st
P p

) A

= (1p + A A 5'1)’1 (A + AN 82 A)

= (L +AN SH T A @ s+ 8y
p m

1.,-1 -1

= (8T an s, (I + A 670 0)

“u 1

= [(s + A AL e

177 A(I_+ A* 8 Q)
m

§ (6 +AA) T A (I + A 5”1 A)

Therefore,

s (I + A s~ a7t (6 + A A) A

Theorem B.2

(S5-8)8 A = ACA &1 H.

Premultiplying both sides of the equation in theorem B.1 by S,
we get
(8.1) s &1 (I +A st s seeaanta.
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Since A A' + 6 = , then, (B.1) may be expressed as

= . = -1
(B.2) s &1, (I + A8 1oyt o sty
By theorem A.5, S g1 = A So,
6_1 -~ .- “ ~ 1 ~ ~ ) ~ A_l A
S 6 A=A(Im+A'6 A = A+ AA 6 A or
A_l ~ ~ ~ A A‘-
S8 A-IA = AA' S 1 A
-~ A_l ~ ~ ~ ~ 1 A

Therefore, (S

I
o
N
o
>
1]
>
—~
=
o
-

Theorem B.3

The characteristics roots of (S - 6) § 1 are equal to the

1

characteristic-roots of Q = (S - §) 9—1 where

61 0 0 ¢ ¢ ¢ « O
1
0 P
3 | 62
Q- =
1
0 - - ¢ ® [} [ . 8 a0

8

P
Proof:
The characteristic equation of (S - §) 6_1 is

| (s-8) 61 - a1 | = | (5-6) - x| |86 ] = o
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The characteristic equation of S (s - §) Q_l is

lats-at-ar| = Jats-8 - a0l

-1

@ JIs-6-aaq| |2 = [s-6-2s] |6 =0

1

1]

the characteristic equation of (S - §) &

Theorem B.u

-~ ~

If A' & A dis a diagonal matrix, then the characteristic roots

A-l -~ - -~ A_ -~
of Q (S -68)¢@ 1 are equal to the successive elements of A' § & A,

-

and hence the ith column of Q ~ A is merely the characteristic vector

corresponding to the ith largest root of 9—1 (s - 8) Q-l "

Proof:
Premultiplying both sides of the equation in theorem B.2 by
Q" we get
Q i A (A" 6 1 A) = Q@ (S -6)68 " A or
6-1 -~ A_ -~ A_l A-l -~
RTAT = [ (s -8)at] @t A where
J = A 6—1 A . The element in the sth TOW, rth column
P %95 %qr
of J is equal to [ e L
q=1 5 2




Let

al(s-68)a

-~

1

pl

. blm
. b2m
. b
pm
-

Therefore,

—

by

b

21

pi

blm

2m

pm
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= - L o
bll bli blm
b21 b2i b2m

cala:| ¢ v e s C e o w B
b b . b
pl p1 pm

Therefore,

— - ~ -

P13 bys

P bzi

3. ) - C ’
i

b . b .

pi pi
] I
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or
[~ ‘1 - I
b,
1i bli
bos boi
) A-l AA_
c-J1|| . o= |ot (-6 t-g1]|
o 8 p
b . b_.
pl pi
L el L -




