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1. THE LINEAR COMPLEMENTARITY PROBLEM

P

1.1 Statement:of ‘the Problem

Let*R"  be' the’ n-dimensional real Euclldean space and

let RPXD be ‘the set of nxn matrlces w1th real entrles‘

Given ~M & RM'¥1 and q' € R , the llnear complementarlty

problem, denoted by (q,M), is the follow1ng problem

n

Find w, z € R _
- Subject to w = Mz + q o ‘ (1) .
| | w>0, z>0 | | | “_gz)_
wtz =‘ 0 L , | S Q%l

where wJc denotes the transpose of W. The linear comple—

mentarity problem (q,M) is sa1d to be of order n.
Slnce 4w >0 and“’z > 0, the constraint. wtz = ]zlezj-o
1mD11es that ‘wjzj = 0 for gach -j =1, 2, ...y n. The

variables ’wj and zj are said to be complementary. Any
pair (w3z) that satisfies (1), (2), and (3).is called a

complementary solutlon and the set of all complementary

solutlons of (q,M) is denoted by C(q,M). Note that if
9 2 0, the linear complementarity problem  (gq,M) always has

a complementary solution given by (w;3z)- = (q;0).
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”'Thefiiﬁaafgcompiémenféhit? problém has been shown to
be a unified form of problems in diverse fields of study
such as mathematical programming, game theory, mechanics,

and economics.

Cottle and Dantzig/[1] and Lemke [6] showed that linear

programming problems, convex quadratlc programmlng - problemsi,

and flndlng Nash equlllbrlum p01nts of bimatrix games can
be formulated as llnear compllmentarlty problems. Ingleton‘
[5] descrlbes Lagrange s equatlon of motion fé¥''the initial
veloc1t1es under applled 1mpulses of a dynamical- :8ystem -
subject to smooth unilateral constralnts and shows how this
equation can be reduced to the form of the 11near comple~
mentarity problem. Dantzig and Manne [2] analyzed the in-
varlant capital stock problem from the viewpoint of Lemke's

linear complementarity algorithm,

“In"the next two sectlons the llnear programmlng _problem.
and the convex quadratlc programmlng problem will be formu-
;lateq"as -linear ‘complementarity problems.z These formulat;ons

are due to Cottle and Dantzig [1].

1.2 The Linear‘Pnogramming Problem
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Consider the: following pair of dual 11near programmlng

A
I 7
H .

Prlma;;_ Min. CEXE

problems:-

.“S.:tvoﬂ AX . > b

x > 0 .. . . e . st awm o oo e @iweis e s



(D)

[©)]
...
ot
.
T
ot
<
A
0

The. following theorem gives a necessary and sufficient
condition for the primal and the dual problems to have

optimal solutions:

1.1:1. Theorenm . {Weak Theorem-ofuComplémentary Slackness)

Given the pair of dual lineaf'brégramming problems
P and Dy~a necessary ‘and sufficient condition for X and vy

to be optimal is that they satisfy the equations

vy (Ax - b) = 0
e (¢ - Aty)?x 2 0o . L
Proof: See Simmonard [9!. [:]
I we  let us=s-Ay+c . (4)
and ‘7S - v v =AX- b, ' Tl A (5)

then u > 0 and v > 0 and the equations in Theorem 1 become

vvextuzo. o (e




We can rewrite conditions (4), (5), and (6) as follows:

r - - ~ o -
u 0 ~-A P x| | c Dt
= + (7)

;xfu,f_ytv

n
‘©
v

Lo (8)

where x > 0, y

Iv

0, u _>_ 0, and v > O. : P . .(9".)‘”

The following identifications express:-conditions (7), (8),.and

and (9) as a linear complementarity problem:

e —At 1% c
w = M 2z .=t q =
v . 0 y "b .

1.3 The Convex Quadratic Programming Problem

]

1.3.1 Definition. Let C be a convex subset of R". A

function f defined on the set C is convex iff for each pair
X, y e Cand X e [0,1], £l + (1-0y]l < AfGx) + (1-DE(y).
‘umﬁé'f01ibﬁing iéwthé ﬁéual formulation of the convex

quadnatic programming problem:
{4

Min oty + %xth
Subject to Ax > b

x >0



where ¢ ¢ R, Q is a symmetric nxn matrix, A is an mxn
. m . . .
matrix, x g Rn, b € R, and the objective function

oty + %xth is a convex function.

Remark: The requirement that 0 be symmetric is not res-
trictive. For if Q were not.symmetric, replace Q by
Q = %(Q + Qt),vwhich is‘symmetric,:jOne,can easily show.

that x%Qx = ﬁtﬁk.

Inﬁquer:toiformulate thekconvex quadratic programming
problem as a linear‘c0mplemqptaritywproblem, we need a well-
known theorem in mathematical programming namely, the Kuhn-
Tucker_Theprem. The statement of the theorem is taken from

Zangwill [10).

1.3.2 Theorem (Kuhn-Tucker): Consider the nonlinear prog-

ramming problem

Max f(x) . i

Subject to gi(x) >0, 1 21, see, m

where all functions are dszébéntiablé. Let x be an optimal

solution and assume the constraint Qdalificationl/ holds.

l/The constraint qualification is a restriction on the
constraint functions., 1t precludes certain irresularities
(e.g., a cusp) on the boundary of the feasible region which
would invalidate the Kuhn-Tucker conditions “should .the optimal
solution occur there. For a discussion of the constraint
qualification, see Zangwill[1l0] or Mangasarian [71.

|




Thell there exist multipliers Ai >0, i=1, 2, ..., m such

that
(1) e x) =0, =1, 2, «eur m T (10)
(2) VE(x) + 4 A.Vg.(X) = 0. (11)

Remarks: 1. -If the functions f(x), gi(x) (i =1, 2, veuym)
are,concavez/,.then the Kuhn-Tucker conditions (10) and

(11) are also sufficient. (See Zangwi11~[10]l

;2. One can show that if the constraints are
" linear, then the constraint qualification holds.  (See

Zangwill [10]).

-

" "The Xuhn-Tucker conditions for the convex quadratic
programming problem is obtained by first rewritiig the

problem into the following form:
t

Max —ctx - Qx

N éi—-‘

Subject to gl(x)
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gm+n(x) = %X

2/, o e L o |
= A function h defined on a convex set C is concaye
'iffv-h_iS'convex. B 1S concaye



where A. is the ith row of A. Note that the objective

function -ctx - %&th is concave and the constraint functions,

being linear, are concave. Hence, a necessary and suffi-
cient condition for X to be optimal is that there exist

multipliers §i >0(i=1, 2, ..., m) and Ei >0 (i=1l, 2, ..., n)

such thatJ
v; (A; X -b.)=0,i=1,2, ..., m : (12)
U, %, =0, i1, 2,7...,'n (13)
m + n_t
me - Qx + ] yiALL ¢+ _Z u;I;,= 0 aw)
i=1 1=1

where I,. is the ith row of the identity matrix I. The

conditions (12), (13), and (14) can be written as

TYAX - b) = 0

oty =0

—c - Qx+ A% 4T = o,
Therefore, a necessary and sufficient condition for x to
be an optimal solution of the convex quadratic programming

problem is that there exist y >0, u>0and V= Ax - b

that solve the system of equations

ox - Aty + ¢ (15)

o
!

v =

utx + vy =0 (17)

Ax - b (16)




u X :Q -At
By setting . w = S z =} s . M= R
v y »A . 0
i :.' 7
c R :’{f".: .
and q = , the system (15), (16), (17) has the form
-b

of a.linear complementarity problem.




2. THE GEOMETRY OF THE LINFAR COMPLEMENTARTITY PROBLEMx i - .-

The linear gomﬁlementarity bfdbfém‘éAﬁits of a
geometriciinterpretation7thg;iés intuitively appealing
(Murty [8] ). First, we rewrite the linear complementarity
problem_(an).ipto.thgijlIOWing form:.

Find"'w,lz e RO

o
woSubJeet to | T gl | =Plo s g 1)
' 1
1
) w20,23>0 (19)
w'a = o, S a0

2.1 Complementary Cones

Notation. The jth column of a métrix A is denoted by

A'j’

2,1.1 Definition. Given an mxn matrix A, the cone generated

by the columns of A, denoted by Pos[A], is the set of all

non-negative linear combinations of the columns of A, i.e.,

n
Pos[A] = {fu | u = § x.A.., %. > 0}.



- 10 -

In matrix notation, - "
Pos[A] = {u | u = Ax, x > 0}.

Each column'A; is"called a genkrator of the' cone Pos[A]:

O Y
ekt 0 £

2.1.2 Definitions. Let'M & R™™ apq 10t I'ba the hxn =~
. ) . i
identity matrix. Consider the matrix | I]-M |, For each
M B R ] . i
I =1, 2, oo, n, the vegtors‘I.i
H i > i

and -M_, are called
i / i H . d |'] . T
-complementary vectors. An nxh matrix whose jth column is

either I.j or —M,,:.l is called a cbmplemen%ary matrix. The

cone generated by a complementary matrix is called a

complementary cone.

Example

o~



The complementary matrice
= i. -
I=]1,,:1,
S ' L
[ ]
A = -M
A=l I g 4-M,
L ! J
I
B = M., v I,
las Y -~
BN RS VS M : M
SE M “’“-QJ
[ t

-

The complementary cones are

- 11 -

s dre

1 0]
0 1
I

1 1]
0 =N
-2 0 ]
1 1]
-2 17
1 -

2

shown iﬁ-Figure*l.-

Figure 1

b
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Note: The vectors I.45I,,, -M.1» and -M_, are not drawn
to scale. A curved arrow joining two vectors indicate the

cone generated by these vectofs.

Remarks: 1. If M is an nxn matrlx, then there are 2"
complementary cones a55001ated w1th M. The set of
complementary cones assoc1ated w1th M is denoted by

K(M),

2. Whenever a complementary cone is denoted by
Pos{[A], ittis'assumed that A is a complementary matrix.
“The complementarv cone Pos(I} is simply the non-

ey oo -

negative. orthant of.R™,

2,2, Complementary Solutions Induced by Complementary Cones

It is clear from the defjinition of a complemenfary
cone that the linear complemeptarity»ppoblemniﬁ,M) has a
complementary solution if'end only if queiongs to some
complenentary cone. Thus, the unlo; of all the comple-~
menfary cones assoc1ated with M is the set of all a € RN

N,

such that (q,M) has a complementary solutlon.

If q is a point of'a_complementary cone Pos[A], then

n
q = .} X.A,. where leg_O (3 =1.2, ..., n).
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A complementary solutipn (w;z) of (q,M)

can be obtained

by setting the variable associated with A~j equal to %,

for j =1, 2, ..., n and all other:variables in (w;3z)

equal to zero, i.e.,

X. if A . = I,
- i T3 "]
F . o s 7
. ,0 lf -;A.,j,t: = —I,Ioj
0 if Ay = I
%57 if A w0
1 . = -3
*5 .5 '3

In thig”case, (w3z) is referred to as a

solution induced by Pos[A].

Example

‘1:. 2, ..-,n

complementary




Figure 2

Note that q is a point of Pos [I ,}T ,] and Pos [I i-M
The complementary solution of (q,M) induced by Pos [I .;

is given by

b
"
(o]
N
"
o

The conmplementary solution of (q,M) induced by Pos [I.1§~M,2]

is easily obtained by solving the following equation:

Wil * 2,(-M.,) = q,
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i.e.
1 3
wl + 22 = R
0 N 1
We get
- 10 - !'. [
1. % T3 %9 T 3

The complementary solution induced by Pos [I.l}-M.z] is,
therefore, given by

. 1o |
173 Zp =0

(1]

- w2 = 0 I 22

Wik~

2,3 Principal Submatrices and Complementary Cones

2. 3 1 Notatlon. Let M € Rnxn’ Let J and J be subsets of
{1 2, e n} JJ denotes the submatrlx of M obtalned
by deletlng the rows of M correspondlng to 1nd1ces not

contalned ln J and the columns of M correspondlng to

the 1nd1ces not contalned in J.

Example:
1 0 -2 4 37
0 6 5 -3 1
M =8 9 ¢ -4 ¢
ST 2 s 1
X 0 3 1 1]
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0 4. 3
M.,=— =
Wola 10
0 -3 ]
Mgy =|7 1
L7 1
1 T
M -
ol
] 6 -3 1
Mex =[2 1 0
o 1 1

Xn

2.3.2 Definitions. Let M ¢ R and let J ¢ {1, 2, ces n}

cons1st1ng of r elements ) The submatrlx MJ‘ of‘M is called

a pr1nc1pal submatrlx of order r. When T < n, M.

JJ
called a proper prlnqual submatrlx. Uhen J = {1 “, ...,'n},

then M.. = M. When J = ¢, then M. 1s called the g z

JJ T

principal submatrix.

-

Remark: If M € Rngn, then M;has\2n principal submatrices.

The determinantbof efbrincipal submatrix is called a

principal minor. We adopt the convention that det M = 1.

oo
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»

2,3.3 Definition. M is a principal rearrangementlof a

square matrix M if there exists a permutation matrix P

such that

nxn

Remarks: 1. Given M e R » and a principal subratrix -

MJJ, there exists a principal rearrangement M of M such

that = o e I T
] ad MgT
M =
yi - i
Myy g3 |
where J = {1, 2, ..., n} - J o s R

2. If M is a principal rearrangerent of M, then

det M = det M.

2.3.4 Definition. Let M e R™¥P_. y = {1, 2, «ees n}. Let

JeNand J = ¥ - g,

Define

e
]

.J I

The matrix A(T)

IA.l;A.o: «e+ 1A, ] 1is the complementary

“ b

matrix associated with the set of indiéeer.ﬂ
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Define the correspondence

Myge

Pos[A(J)] ¢—
This is a 1-1 correspondence between the set of complementary
cones associated with M and the set of principal submatrices

of M.

2.3.5 Theorem. Let ﬁJJ be a principal submatrix of M and

let Pos[A(J)] be its cdrrespondingJc0mplementary cone.

Then *

-

= (_13)Y¢ »
det A(J) = (~1) det AJJ

where r is the order of MJJ.

Proof: If J = ¢, A(J)

I

MJJ = M¢¢

=1 = (-13)° S M .
det I =1 = (-1)" det M¢¢. R

If J # ¢, then by a principal rearrangement, the matrix

A(J) can be transformed into

M 0

A(Jy%=| 99
M3y I35

thl ~; e . 5.'.r-~- ; L
det A(J) = det A(J)* = (~1)"det JJJq.[j,

*®
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"3, LEMKE'S ALGORITFM ¥

e

Lemke's Algorithm is an itefatiQé pethod of procesSingl/
the linear complemeﬁf%fify.problgm fq;M). Although the
algorithm termin;tés iﬁ é finite number of steps, it may

fail to process the linear complementarity problem for

some classes of matrices.M. Fowever, Eaves [3] has shown
that Lemke's Algorithm will process the linear complementarity

problem for-a large class of matrices,

3.1, Preliminaries; Definitions and Notation

Consider the ‘linear complementarity proBlem '*

(q,M): - Find w, z € RD
JSﬁbject to w = Mz + g

| v”é w>0, 22>0

) wtz = 0.

-~

l/Processinguthe linear complementarity problem means
finding a complementary solution or showing that none
exists, -
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If q >0, thenw =gq, 2 = 0 is a coﬁpleméntary solution of
(q,M). Assume g Z_O. Introduce'an'artificial variable zg

and define the artifical problem

(q,M)*: Find w, z € R", z, € R
o Subject to w = Mz + q + z e
ST AL S : A
w >0, z >0, 2,20
A - * u:'-"“. :‘r( . ’ . . o
wtz = 0
WhQQEﬁenais”the n-=vector {1, 1, ..., llt.‘ TR
Cpmae s . Lo oam T

RemarK: w = w, z = z, z_. = 0 constitute a solution of

0

(qM)* iff w = W, z = Z constitute a complementary solution

of (q,M).

-

The artificial problem can be rewritten as follows:

(g,M)*: Find w, z € Rn,-zo € R

Subject to [en; M -T] 25 = -q (21)

z | 2 0 (22)

b
N
]

0 (23)



3.1.1 Definition. A vector [zo: Z 3w ]t'that satisfies

(21) and (22) is called a feasible solution of (q,M)*,

Remark: Note that the matrix [en: M { -I] is of rank n;
hence, a basic feasible solution of (qg,M)* has n basic

variables,

3.1.2. Definition. A basic feasible solution of (g,M)* 1is

called complementary iff z, is nonbasic and exactly one

variable in each pair {wi, Zi}’ i=1, 2y «v., n, is basic.

-~

3.1.3. Definition. A basic feasible solution of (q,M)* isg

calléd'almost—complemenxapy iff z is basic and except for
one index, say izk, exactly one variable in each pair
{wi; Zi}’ i=1,2, «v., n, i#k, is basic. The pair

{wk, zk} is called a nonbasic pair. .

Remarks: (1) Both complementary .and almost-complementary
basic feasible solutions satisfy the constraints of (q,M)*,

(2) A complerentary basic feasible solution
of (QaV)*,isva complenentary solution of (q,“),

3.1.4. Theorem. Let q € R™ such that g ¥ 0. Define the

index k by

min q..

q =
K 1<i<n
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Then o e ' . ‘ S AT
ZO = -qk
z = 0
‘ ! v . s CIniine
Wi = qi v- qk ‘ (i=l, 2, o.o,»ltl").:

constitute an almost complementary basic feasible solution
with {wk, zk} as the nonbasic pair.

Proof: Note that'

i A.l qk
1 - = - ¢ Me - -
(i) Zgep +‘Mz” w = -qy : + M0 | -9, ; Q,
- -~ l : ot I iy :
9 7 Qe ]
= —q.
(ii) 2z = =q. > 0 -
Zz = 0
Wl = ql - qk Z 0, 1l = 13 00 3 n -

We show that the variables zd,‘wi (1#]()9 are ba31c.A This

is equivalent to show1ng that the column vectors associated



with these varlables are llnearly 1ndependent. The

varlables w1th their correspondlng vectors are given

below:

.e W o s e ‘ w

Nk
g2

o) k 4 n
[ 1] 1] [ 0] [ 0 ]
! : | e
1| ki cooraimate | ¢
SN | o ] | 1

The linear independence of the vectors associated with

z,» W5 J # k, is now easy to_show.[]

-

3.1.5. Definition. A basic feasible solution is said to

be nondegenerate if all the basic variables are positive.

The artificial problem (q,M)* is said -to" be nondggenerg;g

if all the basic feasible solutions are nondegenerate,

3.2 Lemke's Algorithm

Assumptions;. (Y. g #0

(2) (q, M)= is nondegenerate.

Notation: At the pth iteration,.let-the“COIumﬁ associated
with z be denoted by Z?o, the column associated with
zj(j=l, 254245 1) by Z?j the column associated with

wj(j=l, 2 «vv, n) by W?j, and the rirht hand side (RHS) by qr.

—_—
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Step 0.1. Initialization. Set up the initial tableau:

Zo A 22 see z, Wy Wy e v ‘RHS
M, - - i -

1 Ml I Ml 2 LK Jm l O L 'Y O q

1 M2‘1 Mz 2 ® e M2n O -"l L O 1 "qz

l Mnl an e 0 Mnn O O e 00 "'l "’qn

—~

0.3. Pivot on Zko'

ERCEU RS T

O.4. Multiply row i, i#k, by -1,
Remark: This initial steb éets'the tableau in

feasible canonical form with respect to the

first almost-complementary basic sequence

Zo, Wl » e 0y Wk_!, Wk_'_-l, LI I W}.

0:5. Set r=1, j=k, Z?j i} A?j- Let 25 be the
incoming variabke. : : e

[T




=25 - @
,c‘z/

Step 1. ‘Determine the index t according to the equation

E = min !;:; . HA§¢ >0, 1<1i<n
A AT, | M

t3 1j

If A?j <0 foralli=1, 2, ..., n, stop
The incoming variable can be 1ncreased 1ndef1n1tely
w1thout dr1v1ng any of the ba81c varlables towards

‘zero. Otherwise, go to step 2.

Step 2. Pivot on A £5°

2.0, If z drops from the bééié, étop. The new basic
feasibleﬁéélutibh'ié'ébmplementary.

2.1, 1If zj, j'¢ 0 drops from the basis, set
1
Wy = A?;, let Wy be the incoming variable and

go to step 1.

+ +
- 2.2. If Wj drops from the basis, set erl A?jt let
2; be the incoming variable and gq to step 1.

X

Remarks: (1) The ratio test in Step 1 is similar to the
ratlo test in the Slmplex‘Alaorlthm in 11near programmlng.

It ensures that the basic solution .at each iteration

remains feasible. .




. (2)  The stopping rule in:Step 1 is also similar to

the unboundedness stopping rule 1n tHe Slmplex Algorlthm.
In thls case, Lemke's Algorlthm termlnates in a ray It
will be shown that this stopping rule in Lemke s Algorithm
fails to glve any deflnlte conclu81on 8n the existence of
a complementary solutlon for an arbltrary matrlx M. FHow-
’jever, for some classes of matrlces (Eaves [3]% this stoppirn
ﬁrule 1nd1cates that the 11near complementarlty Droblem (q,V

has no complementary solutlon.

3.3 Finiteness of Lemke's Algorithm'”

- Thls sectlon w1ll show that Lemke s Algorlthm termi-

Noam <

nates in a flnlte number of 1terat10ns.

3.3.1, Definitiohi If'PP+i is a basicifeasible solution

obtained from a basic feasible soii:itio'ri’Pr by pivoting in
Step 2 of Lemke's AlgOrithm;ithen-P£ and Pr+1 are said to

be neighborss The point*Pr is ‘called the predecessor of

Pr+l and Pr+l 1s called a successor of Pr‘

) o : . L S i ’ PR s

34342, . Definition. 'Theisequence of almost—complémentary

basic feasible solutions generated by Leniké's Algorithm: -

is called an almost-complementary path.
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3.3.3. Definition. Let P be an almost-complementary basic

feasible solution with {wk, z } as the nonbasic pair. If
wk or zk can be 1ncreased 1ndef1n1tely w1thout dr1v1nc any
basic varlable to zero, the ray emanating fvom P generated

by increasing Wy or z, indefinitely is called an almost-

complementary ray.

3.3.4. Lemma. An almost-complementary besic'feasible
solution in an almost-complementary path can have at most

two neighbors,

. .Proof: This follows from the fact that every almost-
complementary basic feasible solution has exactly one
nonbasic pair, say {wk, zk}, and pivoting requires holding

all nonbasic variables at value zero and increasing w

Z e [:]-

kOI‘

4

3.3.5. Lemma. The 1n1t1a1 almost~complementary basic

feasible solutlon cannot have a Dredecessor.

Proof: Let P, be the initial almost-complementary
basic' feasible solution with {wk; zk}'as the nenbasiC‘pair.
Note that the successor of P is obtained by pivOtiﬁg*zk"
into the bas1s. bence, 1f P has a predecessor, then 1t

can be obtalned by plvotlnp Wy into the“pa81s. We qla;m
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that we cannot pivot w, into the basis, i.e., W, can be

k
- increased -indefinitely without driving a basic variabile

to zero -

ialrtableau follows:

The relevant pSftibﬁ‘6f4the ini’

. 'i_____}' . ‘ o Dl Zo . see . Wk talig e R}.ght Hand Slde
pivot___LT : _ )
. ’elmnﬁ'f—];— L ) 1 v e e qk -

After pivoting Z into the basis (with pivot element as
“shoWn above), the initial tableau in feasible canonical

form with respect to the first almost-complementary basic

sequence is: e
*zo“ﬁ..; ’ﬁi’ ve.  |Rigat Hand'Side:
0 -1 =q; ¥ gy
-’l : A ."Z""’li‘ g als "'qk :
0 1 4 T 9

Since. the column associated:with vy is negative,ﬁWﬁﬁéan be

increased indefinitely without driving any basic variable

to zero. D

3.3.6. Theoremn. ’Alohg an almost-ccmplemcntary path, an

-~

alﬁbe'complémentary basic feasible solution cannot recur.
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L Egggf' Let P ?‘Pi’ vee, be an almost complementary -
path and let PJ be the first almost complementary bas;cA

feasible solution that recurs. Let Pk be Pj's predecessor
when it recurs. First; we 'note that Pj“¥ ?6 éineé'Pé-does

not have a 'predecessor, ' -

Figure 3

¥

By the nondegeneravy assumption, the extreme points of the
feasible region of (q,M)* .are in one~to-one correspondence
with the basic feasible solutions. Hence, Pj-l’ Pj+1’ and

Pk are distinct basic feasible solutions that are neighbors

of P.. This is impossible-sincevPj can have at most two

neighbors.»[:]




3.3.7¢ 1 Theorem. Lemke's Algorithm terminates in-a finite

LT SUDET VRS I

'gggég Startlng from an almost-complementary basic
fea51ble solutlon, Lemke s Algorlthm generates an.almost-
complementary path and stops when (a) it generates an almost
complementary ray or (b) it obtaine a complementary basic
feasible solution. Noting that np'almost-complementary
basic feasible solution can recur‘apd the number of basic
feasible solutions is finite, the aféorithm must terminate
in a finite number of steps. []

\

- _ ¥
Example 1. ~This exanple shows how Lemke's Algorithm is

used to solve a 11near programmlng problem.

\
It also shows Hermlnaflonng gemke s Algorithm

in a complementary solutiom;

Primal Problem Min iuuxl + 108x,
s.t. uxi + x, > 4
. ). 210 3%y k- 3xy >0 Bl
X157/ X2 > 0 i
r»ﬁppel Ppcﬁiem . . Max by, + 6yz.
s.t. My, +. 3y, < 1uy
yi + 3y 5_3.1‘08.

Yi » y2 > O
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Let v = [v,, Vz]_t_';'he. the vector of surplus variables for
the primal problem and let:u = [u;, uz]t be the vecth”of
slack variables for the dual problem. The associatéa;linear

" complementarity problem is that of finding w, z € R such
tﬁag w =Mz +q, w>0, z4iw0 énd wtz = 0 where |

[ uy ] R [0 0 -4 =37 O 1uy T
u, X, 0 0 -1 -3 - | 108
w = zZ 3 M = q =
Vl yl y 1 0 0 -4
Va2 | . - Y2 | 1 3-3., 0.0 d L -8 ]
Initial Tableau
Zo 23 29 Z3 Zy Wi wzz W3 Wy RHS
' 0 0 -4 -3 -1 0 0 0 | -
1 0 0 -1 -3 0 -1 0 0 -108
1y 1: 0 0 o. 0 -1 0 ly
1{3 3 0o ¢ o0 g0 -1 6

Min q: = g = -b
i<i<y 1 4

Initial nonbasic pair = {zy, wyl

Initial almost complementary basic sequence:<<%o, Wys Wa, w;>



-

¢

DR——
b
-

PR T NI .. -
LN LA . '
ol 1T .l __' E'
s T x : L
= v i
< -t i

s
v A
P




- Basic . v o . o - _
Vari- | z4, 2z, 2z, 23 z4y W, W, W3 W, | RHS
ables e e , : :

W, 0 o o B o 1 -1 o ol 36
3 1 101 1

Z, 0 2 0 3 1 0 3 2 2 37
1 11

Z 0 7 1 0 0 0 0 2 2 1
9 : : 3 1

Z g 1 2 0 0 0 0 0 2 2 3

Introduce z, (the complement of w,) into the basis;

w, drops from the basis.

Basic
Vari- | z, Z, Zy. . 73 2, W, W, Wz w, | RHS
ables

I L

z) 0 0 0 1 0 3 3 0 0 12
3 5011

Zy 0 2 0 0 +1 -1 3 72 2 33
X T - RS |

Za 0 2 1l 0 0 0 0 2 2 1
3 ; 31

Zo 1 7 0 0 0 0 0 2 2 3

Introduce z, (the complement of w, ) into the basis;

z, drops from the basis.

Basic
Vari- 29 Z1 2y . Z3 Zy Wi Wa Wi Wy RHS
ables

_ 1 1

Z3 0 0 0 1 0 3 "3 o0 0 12

1 W L
Zy 3 0 0 0 1 -1 3 0 3 32
1 5 b 4
Z2 9 0 1 0 0 0 0 & 9 3
2 11 2
z, 9 1 0 0 0 0 0 "3 9 3




- 34 =

‘Since zZ, dropped from the basig; the algorithmistopsxééd

u“thgifqllgﬂingwcomplementary”sgintion is obtained: ...

W, =0 2y °

wjF w|r'\>

In terms of the givenllinéar programming broblems,

o
:
<|:|)
b
:
i

The?optimal solution of the primal problem is

2
3

w|&

The optimal solution of the dual problem is

y, = 12

, — ﬂv,. y 2. = 3 2 .
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Example 2, - This example shows Lemke's Algorithm termi-
nating in an almost-complementary ray and
the linear complementarityrproblem has no

complementary solution.

0 N P ]

LN

Note: The nondegenerate coﬁplementary cones are indicated

by the curved arrows. Tbgjdegeneraxe,complementéry

cone Pos[-M_1-M, ,] is indicated by the bold line. .
' .
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Since, q does not belong torany complementary cone, -
the linear complementarity problem (q,M) has no

complementary solution.. -

Initial nonbasic pair: {w,, Z,}

Initial almost-compementary basic seguenceﬁ <f°, wé}

/
o

- | ///
Initial Tableau ’>ff

Zy . Zy Zs  £ﬁ}; Wy RHS

./J‘ i
1 1 -1/m/ -1 0 1
1 -1, 0 -1 2

Initial Tableau fFeasiBlejCénbnical Form)

\l I ST T Dl

" Basic |
so-Variables:: Zo Z1. Zz, Wi oWz .| RHS
e Qi N RS >l 1 a1 T

Zg 1 -1 1 0 -1 2

Introduce z; (the complement of w,) into the basis:

wi drops from the basis,
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Basic. - o CEE R
Variables z, z, z, W, W, RHS™
1 1 1
z;‘ 0 -1 1 2 ? 2
1 = 3
z; 1 0 0 2 2 2

Introduce z; (the complement of wg) into the basis;
since the column under z, is nonpositive, the

!

algorithm‘terminates in an almoét-complémentary ray.

Remark: The matrix M in the preceding example 1is a positive
semidefinite matrix. It has been shown (Eaves [3])
that if M is positive semidefinite, then termi-
nation in an almost-complementary ray implies
that the linear complementarity problem does

]
not have a complementary solution. In fact,

[y

Eaves [3] has shown fhét this 1is true for a

large class matrices that includes the positive

semidefinite matrices,.




- 38 -7

Example 3. This example shows that Lemke's Algorithm -
ceman terminate in an almost-complementary.ray

even if the linear complementarity problem

has a complementary solution. Let

The point q is contained in the complementary

cone Pos[-M 4 | -M Hence, (q,M) has a

e

complementary solution.



Initial Tableau

S S VP

Wy 1YW, | RHS

Min qi = q2 =: . -.-2,5.' i

l<i<?2
I : f
: : PP Lo ‘ I S T

Initial almost—ccmplementa%y basic sequence: K(zo, w;>

Initial nonbasic pair: {wz, zz}‘;u

Initial Tableau (Feasible Canonical .Form)

l

Basic ' M .
Variables %o %1 22 Wy W2 RHS
W, 0 1 -1 1 -1 1
z, 1 1 0 0 -1 2 '

i I , :
Introduce z; (theacémplement of w,) into thé basis.
Since the column under z, is nonpositive, stop. The
variable z, can be inecreased indefinitely: without
driving any of the basic variables z, Or w, to zero,

Hence, Lemke's algorithm terminates in an almost-

complementary ray.
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Example 4. A convex quadratic programming problem solved
by Lemke's Algorithm, :

Min  f(x;, X2) = x; + x; + 2x) + 2x;%, + 2%,

This problem can be written as follbws:

X3 .
Min [1 1] +
/ X2 N

}_ 4 2 X1
2[(x,x,]

ad -

- b $1
Sete [l 2]

iv
N

X2

I xl‘j S L e b e e e 2B e

o L X2

e - N

In the notation of Section 1.3,

1 Y 2

0
]

e
"

1 | SR R ST B SR
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The objective function is’ cdnvex:since.the matrix Q.ds.li:- ... -

positive definite. The associated linear complementarity

Voo o LR LT

problem;Qq,Mlihasw%w e

ui Qx - Ay, + o

u =

Vi

i g yr e Kuhn-Tucker muTEipTiew -

Zo Z) Z2 Z3 Wi ”W2 W3 RHS
1 4 2 -1 -1 0 0 -1 B
1 2 4 -2 0 -1 0 -1
ll | 1 2 0 0 0 -1 2
A 4 ’ {
P— ; - — et e et et & A oyt a4 S s P e

Min q% = q = =2 é
1<i<3 ,

Initial -nonbasic pair: {ws;, 23}

Initial almost-complementary basic sequence: \fo, Wis Wa2je
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Initial Tableau (Feasible Canonical Form)

Basic ‘ ' ’l

Variables | 2° Z1 22 Z3 w1 w2  ws | RHS
w1 0 -3 0 1 1 0 -1 3
R o -1 -2 ]2 o 1 -1 3
Z0 1 2 1 2 o o o -1 2

Introduce zs; (the complement of w; ) into the basis;

wz drops.

Basic :
Variables Zo Z, Z2 Z3 W, Wo - W3 RHS
o 5 101 | o3
W, 0 2 1 0 1 2 2 2
L O § 3
23 0 2 -1 1 0 2 2 2
«———2g 1 1 2 l 0 0 o - 2

Introducé”iZwYthéﬂEbﬁﬁléméﬁiméfw;:wswigégwthe basis;

i

z, drops; o
BaSJ:.C ZM C oz A A W w w RHS
Variables 0 z 3 1 2 3
1
w1 20"
S
Z3 2
23 . 1
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Since Z dropped from the ba51s, the algorlthm Stops at

a complementary solutlon glven by'

N =

N

-
on

o

N]dﬁ‘i—' -

w3 = 0 Z3 =

e H

In terms of the glven convex quadratlc programmlng problem,

the optlmal solutlon is glven by,
BOF T T e TLEN L e -

Breres el e o s 0 Ry S gy o =ec 0 “ e T loeger

1]

n
(=]

X2 Z.z Commey

~

optimal solution, x* =|

Figure 6




- 4y -

3.4 Termination of Lemke's Algorithm in a Ray

Examples 2 and 3 shoh thaf‘ferminatisn ia a fay does
not lead to a definite conclusion on the existence of a
complementary solution.q However, for some classes of
matrices M, termlnatlon in a ray implies that the linear
complementarity problem has no complementary solution.
Lemke proved thls result:&n'the class of copos1t1ve plus
matrlces whlch 1nc1ude tﬁs p031t1ve semldeflnlte matrlces.
We note that the matrices in the linear complementarlty

problems associated with the linear pProgramming problem and

the convex quadratic programming problem are of the form

-, —

which are easily shown to be positive semidefinite.;.It
follows that Lemke's Algorithm can solve linear programming
and convex quadratic programming problems. This section

shows that positive semidefinite matrices are copositive plt

3.4,1 Definition. A square matrix M is coposmtlve plus iff

>

T

(1) 2z Mz > 0 for all z >0 “,f”:f

e

(1) M+ Mz = 0 if 2'%M5% 0 and z > 0.



3.'4‘2
exists
matrix

M.

Lemma. If M is a real symmetric matrix, then there

a nonsingular-matrix U such that U™™MU is a diagonal
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i

whose diagonal entries are characteristic roots of

Proof:
Lemma.
and thz

Proof:

.

See Hohn [4].

If M is'a real symmetric positive semidefinite

= 0, then Mz = 0,

Let M be an nxn real sSymmetric positive
semidefinite matrix. Let U be the non-

singular matrix in Lemma 3.4.2 and let

where Ai >0 (i=1, 2, ... n) are the

characteristic roots of ﬁ. Define
. -’E' = U:" Z ..

Then z ="UZ

- By assumption, thz = 0, 1.e.,

A 2%’?*09.
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R

Since Ut is nonsingular, then
MUZ = 0.

or Mz = 0.4;[:] .

3.4.4 Theorem. Let M be a real positive semidefinite matris

If 2 >0 and z2™Mz = 0, then (M +u%)z = 0.

Proof: If M is positive semidefinite then M + Mt is

symmetric positive semidefinite and
: z (M + Mt)z-=‘thz,'

~Nf

If z'Mz = 0, then zt(M + M)z = o,

By Lemma 3.4.3
(M g Mt)z TEog., D

3,4.5 Corollary. A positive semidefinite matrix is
copositive plus.,
Proof: Follows?fﬁgh’éheidefinition of a positive semi.

definite matrix and Theorem 3.4.U4, [:}
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