Institute of Economic Development and Research SCHOOL OF ECONOMICS University of the Philippines

Discussion Paper No. 76-2

30 January 1976

GROWTH ACCOUNTING OF THE PHILIPPINES: A COMPARATIVE STUDY OF THE 1965 AND 1969 INPUT-OUTPUT TABLES

by

Mitsuo Ezaki

NOTE: IEDR Discussion Papers are preliminary versions circulated privately to elicit critical comment. References in publications to Discussion Papers should be cleared with the author(s).

_ ^

Prof. GROWTH ACCOUNTING OF THE PHILIPPINES: MA COMPARATIVE 1 STUDY OF THE 1965 AND 1969 INPUT-OUTPUT TABLES bornsiyes wir to benoreal (livibysusers in cost oct driv soll the measurement of productivity bange, therefore, may be good synonemolaly with the grown accounting or the against of more a worr with National income statistics (NIS) and input-output table (10 table) constitute a basic part of the system of national accounts in the broad sense (SNA). They are closely related with each other in that net outputs or values added in NIS must be equal to primary inputs in TO table, while expenditures in NIS must be equal to outputs delivered to final, demands in 10 table. As a result, they must be mutually dependent also in terms of growth rates in which the growth accounting is based - The purpose of this paper is to provide a growth accounting of the Philippine national economy using the two input-output tables of 1965 and 1969 and to show the linkage of this measurement based on IO tables to the corresponding measurement based on the corresponding measurement between the corresponding measurement between the corresponding measurement based on the corresponding measurement between the corresponding measure $\frac{2}{3}$ is a sale with anthodology. Backing 3 12.818

The growth accounting is a method of analysis to a account for growth of output(s) in terms of growth of year various inputs, so that ittis often called the analysis of sources of growth. In almost allocases, the output growth cannot be explained completely by the growth of inputs and

the so-called "residuals" appear which mean the unexplained portion of output growth. The "residuals" can be identified with the rate of productivity increase or the estimated rate of disembodied technical progress. The measurement of productivity change, therefore, may be used synonymously with the growth accounting or the analysis of sources of growth. In this paper, the methodology of growth accounting under the input-output framework will be discussed from the point of view of measuring productivity change or technical progress. It will be shown that the productivity index which introduces intermediate inputs explicitly (i.e., growth accounting based on IO table) is theoretically better than the conventional one which uses value added as output neglecting in a sense intermediate goods as production factors (i.e., growth accounting based on NIS). 4 This seems obvious in the industry level but it is still true even in the aggregate national level. The relationship or linkage between 10 and NIS measures will be derived as a by-product. A second arrest of Dallanough and Arrest

Section 2 deals with methodology. Section 3 provides measurement on the Philippine economy.

2. Growth Accounting Based on the 10 Framework -- Methodology

o servati i (s) merudi ko sa_{mba} ci sel tababba

In this section, we will discuss the methodology of growth accounting from the point of view of productivity

measurement. First, we will derive the productivity index of the i-th industry (Ti). Then we will derive the aggregate productivity index for the whole economy (T) and compare it with the conventional measure (P). Next, we will provide some mathematics of aggregation to justify T rather than P as an appropriate measure for aggregate productivity change. Finally, we will summarize the computational formulas from the point of view of growth accounting.

2.1. Industry Productivity Change

Under the framework of input-output table, the following accounting identity must hold for the i-th industry:

(1)
$$q_{i}y_{i} = \sum_{k=1}^{n} q_{k}^{r}y_{ki} + \sum_{j=1}^{m} p_{j} x_{ji}$$
 (i=1.7.n)

where y_i is quantity of total output, y_k;'s are quantities of intermediate inputs, x_j;'s are quantities of intermediate inputs, x_j;'s are quantities of primary factor inputs, and q_k's and p_j's are corresponding prices. This accounting identity is the starting point of measuring in the sense that the Divisia productivity change in the sense that the Divisia productivity index for the i-th industry (Tⁱ) can be derived from that identity, 5/ i.e.,

$$(2) \frac{\dot{\mathbf{T}}^{\dot{\mathbf{I}}}}{\mathbf{T}^{\dot{\mathbf{I}}}} = \frac{\mathbf{y}_{\dot{\mathbf{I}}}}{\mathbf{y}_{\dot{\mathbf{I}}}} - \sum_{k=1}^{n} \frac{\mathbf{q}_{k} \mathbf{y}_{k\dot{\mathbf{I}}}}{\mathbf{q}_{\dot{\mathbf{I}}} \mathbf{y}_{\dot{\mathbf{I}}}} \cdot \frac{\dot{\mathbf{y}}_{k\dot{\mathbf{I}}}}{\mathbf{y}_{k\dot{\mathbf{I}}}} - \sum_{j=1}^{m} \frac{\mathbf{p}_{j} \mathbf{x}_{j\dot{\mathbf{I}}}}{\mathbf{q}_{\dot{\mathbf{I}}} \mathbf{y}_{\dot{\mathbf{I}}}} \cdot \frac{\dot{\mathbf{x}}_{j\dot{\mathbf{I}}}}{\mathbf{x}_{j\dot{\mathbf{I}}}}$$

subspace that $i^{(1)}$ are the elast the rest that with itself in the where T'=dT'/dt (t: time) and so on.

Now let us consider a theoretical justification for Ti/Ti as an appropriate measure of productivity change.

Upped: Dividual of the extraper to be used to the extraper to the the purpose, let us write the production function of more declured. Therefore the production function of the interior of the industry as

the i-th industry as

(3)
$$y_i = f^i (y_{1i} \cdots y_{ki} \cdots y_{ni}, x_{1i} \cdots x_{ji} \cdots x_{mi}; t)$$

and assume constant returns to scale. Then the time shifts of this function can be expressed as median

$$(4) \quad \frac{\mathbf{f}^{\mathbf{i}}}{\mathbf{f}^{\mathbf{i}}} = \frac{\ddot{y_{\mathbf{i}}}}{y_{\mathbf{i}}} - \left(\sum_{k=1}^{n} \frac{\mathbf{f}_{\mathbf{k}}^{\mathbf{i}} y_{\mathbf{k}\mathbf{i}}}{y_{\mathbf{i}}} \cdot \frac{\ddot{y}_{\mathbf{k}\mathbf{i}}}{y_{\mathbf{k}\mathbf{i}}} + \sum_{j=1}^{m} \frac{\mathbf{f}_{\mathbf{i}}^{\mathbf{i}} x_{j\mathbf{i}}}{y_{\mathbf{i}}} \cdot \frac{\ddot{x}_{j\mathbf{i}}}{x_{j\mathbf{i}}} \right) = 0$$

where
$$\hat{\mathbf{f}}^{i}$$
 = $\partial \hat{\mathbf{f}}^{i}/\partial \mathbf{t}$, $\hat{\mathbf{f}}^{i}_{k}$ = $\partial \hat{\mathbf{f}}^{i}/\partial \hat{\mathbf{y}}_{ki}$ and $\hat{\mathbf{f}}^{i}_{j}$ = $\partial \hat{\mathbf{f}}^{i}/\partial \hat{\mathbf{x}}_{ji}$. (1)

Under the marginal conditions of producer equilibrium, avitions on a production function reduce to the Divisia of inverse-line inpuls, silts are quantially of primary factor index for productivity change defined above, i.e.,

(5)
$$\frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2$$

extraction being near all advances and a suppose which replaces T^i/T^i . By using the standard mean beviage of map () crossboth decreases as a subscient input coefficients (i.e., $a_{ki} = y_{ki}/y_i$ and $b_{ji} = x_{ji}/y_i$) equation (2) can be rewritten as

(6)
$$\frac{\dot{T}^{\dot{i}}}{T^{\dot{i}}} = -\left(\sum_{k=1}^{n} \frac{q_{k}y_{k\dot{i}}}{q_{\dot{i}}y_{\dot{i}}} \cdot \frac{\dot{a}_{k\dot{i}}}{a_{k\dot{i}}} + \sum_{j=1}^{m} \frac{p_{j}x_{j\dot{i}}}{q_{\dot{i}}y_{\dot{i}}} \cdot \frac{\dot{b}_{j\dot{i}}}{b_{j\dot{i}}} \right)$$

which means the weighted average of the rates of <u>decrease</u> in input coefficients. This is the continuous version of Leontief's definition on the rate of technical progress in the i-th industry. 7/

It should be noted here that the above measure of industry productivity change allows explicitly for intermediate inputs as production factors. In many cases, however, the industry productivity change or industry technical progress is measured by using real value added and primary factor inputs only. It is obvious that this conventional measure is not an appropriate one, since real value added does not represent quantity of output correctly and the role of intermediate goods is not clear in this measure.

2.2. Aggregate Productivity Change

Let us now consider the aggregate productivity change for the national economy as a whole. For the purpose of aggregation, let us bear in mind the following accounting definitions:

(7)
$$U = \sum_{i=1}^{n} y_{ki}$$
 (total intermediate input of the k-th good)

(8)
$$X_j = \sum_{i=1}^n x_{ji}$$
 (total primary input of the j-th factor)

Then, using equation (1), we get

$$(10) \sum_{j=1}^{n} q_{i} y_{i} = \sum_{j=1}^{m} p_{j} x_{j} .$$

(11)
$$\sum_{i=1}^{n} q_{i}y_{i} = \sum_{i=1}^{n} q_{i}U_{i} + \sum_{j=1}^{m} p_{j}X_{j}.$$

Judging from equation (6) and noting $\sum q_k y_{ki} + \sum p_j x_{ji}$ = $\Sigma q_i y_i$, it is clear that the best way to define the aggregate productivity change (T/T) is

(12)
$$\frac{\dot{\mathbf{T}}}{\mathbf{T}} \equiv -\left(\sum_{i,k}^{\mathbf{T}} \frac{\mathbf{q}_{k} \mathbf{y}_{ki}}{\Sigma \mathbf{q}_{i} \mathbf{y}_{i}} \cdot \frac{\dot{\mathbf{a}}_{ki}}{a_{ki}} + \sum_{i,j}^{\mathbf{T}} \frac{\mathbf{p}_{j} \mathbf{x}_{ji}}{\Sigma \mathbf{q}_{i} \mathbf{y}_{i}} \cdot \frac{\dot{\mathbf{b}}_{ji}}{b_{ji}}\right)$$

which is equivalent with $\frac{8}{}$

$$(13) \quad \frac{\dot{T}}{T} = \sum_{i} \frac{q_{i}y_{i}}{\Sigma q_{i}y_{i}} \cdot \frac{\dot{T}^{i}}{T^{i}} \qquad \qquad \cdots$$

Then, using equations (2), (7) and (8), the above T/T can be transformed into $\frac{9}{}$

(14)
$$\frac{\dot{T}}{T} = \frac{\dot{y}}{y} - (1-\theta) : \frac{\dot{U}}{U} - \theta \cdot \frac{\dot{\chi}}{\chi}$$

where

 $\theta = \sum_{j} X_{j} / \sum_{i} q_{i} y_{i} = \sum_{i} q_{i} Y_{i} / \sum_{i} q_{i} y_{i}$ (value added ratio) $(1-\theta) = \sum_{i} q_{i} y_{i} / \sum_{i} q_{i} y_{i}$ (intermediate input) ratio)(15) $\begin{array}{c} \dot{y}/y \equiv \Sigma \left(q_i y_i / \Sigma q_i y_i \right) \cdot \left(\dot{y}_i / y_i \right) & \text{(Divisia quantity)} \\ \dot{U}/U \equiv \Sigma \left(q_i U_i / \Sigma q_i U_i \right) \cdot \left(U_i / U_i \right) & \text{(Divisia quantity)} \\ \dot{X}/X \equiv \Sigma \left(p_j X_j / \Sigma p_j X_j \right) \cdot \left(\dot{X}_j / X_j \right) & \text{(Divisia quantity)} \end{array}$

In words, the aggregate productivity change (T/T) may best be defined as the weighted average of the rates of decrease in input coefficients all over the national economy [equation (12)]. Equivalently, it may also be defined as the weightd average of the industry productivity changes with value shares of industry outputs as weights [equation (13)]. Furthermore, it is identical with the Divisia index for oproductivity change derived from the identity (11) [equation (14)]. It should again be noted that, as in the case of industry productivity change, the above definition of the aggregate productivity change allows explicitly for intermediate inputs as production factors.

The conventional way of measuring the aggregate productivity change (P/P) is based on the Divisia index derived from the accounting identity (10): $\frac{10}{}$

everages of author er mit and income the

$$(16) \quad \frac{\dot{\mathbf{p}}}{(\text{nimed})} \equiv \frac{\dot{\mathbf{Y}}}{\mathbf{Y}} - \frac{\dot{\mathbf{X}}}{\mathbf{X}} \equiv \Sigma \quad \frac{\mathbf{q_i Y_i}}{\mathbf{X}_{\text{nimed}}} \cdot \frac{\dot{\mathbf{Y_i}}}{\mathbf{Y_i}} \cdot \frac{\dot{\mathbf{Y_i}}}{\mathbf{Y_i}} - \Sigma \quad \frac{\mathbf{p_j X_j}}{\mathbf{xp_j X_j}} \cdot \frac{\dot{\mathbf{X}_j}}{\mathbf{X_j}}$$

Using equations (9), (13) - (15), we can easily prove

$$(15)^{7i} \frac{\dot{\mathbf{p}}}{\mathbf{p}} = c \frac{1}{\mathbf{q}} + c \frac{\dot{\mathbf{T}}}{\mathbf{T}} = c \frac{\mathbf{q}}{\mathbf{p}} \frac{\mathbf{q}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}} \mathbf{y}}{\mathbf{p}} + c \frac{\dot{\mathbf{T}}^{\mathbf{i}}}{\mathbf{T}^{\mathbf{i}}} = (\mathbf{p} \times \mathbf{p} \times \mathbf{q} \times \mathbf{p} \times \mathbf{q} \times \mathbf{q}$$

This means that P/P is a weighted sum but not a weighted average of the industry productivity changes (Tⁱ/Tⁱ). Only when there exist no intermediate inputs in the economy, P/P is identical with T/T and can be regarded as an appropriate measure.

Staplow was se bondly od wys sout it lightfull short is the

2.3. Some Mathematics of Aggregation production of the controls

Jorgenson and Griliches [1967] provides a justification for P/P as an appropriate measure of aggregate productivity change. Using the aggregate production function

(18) $F'(Y_1, \dots, Y_n, X_1, \dots, X_m; t) = 0$ most part of the proof of the weighted averages of output growth and input growth:

(19)
$$\cos GF_{i} = \sum_{i} \sum_{j=1}^{F_{i}} \frac{Y_{i}}{Y_{i}} \frac{Y_{i}}{Y_{i}} \cos \sum_{j=1}^{F_{i}} \frac{X_{j}}{X_{j}} \cos$$

where $\dot{F} = \partial F/\partial t$, $F_i = \partial F/\partial Y_i$, $F_j = \partial F/\partial X_j$ and 1/G $\Xi_{i} = \Sigma F_{i} X_{i}$. Then, under the marginal conditions of producer equilibrium, the shifts in production function can be shown identical with the growth rate of P, i.e.,

 $(20) \quad GF = P/P$

Their justification above, however, is not sufficient, because they do not provide a justification for using GF as an appropriate measure of shifts in production function. Furthermore, we can say that GF is not an appropriate measure as far as the aggregate production function (18) means the transformation locus or production possibility frontier which is derived from the components industry production functions (3). This fact can be understood by considering the following aggregation procedure:

Maximize Y,

with respect to \tilde{Y}_1 , y_{ki} , x_{ii} , y_i and \tilde{U}_k

subject to the constraints and the edition in a rest field
$$y_i = f^i (y_{1i}, y_{ki}, y_{ni}, x_{1i}, x_{ji}, x_{mi}, t)$$
 and $(i=1, ..., n)$ of $Y_i = y_i - U_i$ (i=1...n) and $(i=1, ..., n)$ and $(i=1,$

continue under the given parameters Y_2 . Y_n , X_1 ... X_m and t.

In this problem of constrained maximization, the Lagrangean function becomes an analysis and the lagrange to

$$(21)^{n} \stackrel{\cdot}{L} \stackrel{\cdot}{=} \stackrel{\cdot}{Y_{1}} \stackrel{\cdot}{+} \stackrel{\cdot}{\sum} \stackrel{\cdot}{\xi}_{i} \stackrel{\cdot}{(y_{i} - f^{i})} \stackrel{\cdot}{(y_{1i} \dots y_{ki} \dots y_{ni} - x_{1i} \dots x_{ji})}{(y_{1i} \dots y_{ki} \dots y_{ni} - x_{1i} \dots x_{ji} - x_{ni} - x_{ni})} \\ \stackrel{\cdot}{\dots} \stackrel{\cdot}{x_{mi}}, \stackrel{\cdot}{t}) + \stackrel{\cdot}{\sum} \stackrel{\cdot}{\sum} \stackrel{\cdot}{\eta_{k}} (U_{k} - \stackrel{\cdot}{\sum} y_{ki}) + \stackrel{\cdot}{\sum} \stackrel{\cdot}{\lambda}_{i} (y_{i} - U_{i} - Y_{i}) \\ \stackrel{\cdot}{\dots} \stackrel{\cdot}{\eta_{k}} \stackrel{\cdot}{\dots$$

moditive is not developed of adding the outside of some of a conditions for maximization become of a course of a c

These first order conditions, together with the constraints of the present maximization problem, determine the maximized value of Y₁ in terms of the given parameters:

(23)
$$Y_1 = f(Y_2...Y_n, X_1...X_m, t)$$

which, when written in the form of implicit function, gives the transformation locus or production possibility frontier

(18). Furthermore, from the properties of Lagrangean multipliers, $\frac{12}{}$ we get

(24)
$$\begin{cases} \frac{\partial Y_1}{\partial Y_1} = -\lambda_{i_1, \dots, i_n} & (i = 2..., n) \text{ for all } i = 1... \end{cases}$$

$$\frac{\partial Y_1}{\partial t} = -\sum_{i=1}^{n} \xi_i \hat{f}_i$$

so that, using the first order conditions, we can derive

(25)
$$\dot{\mathbf{F}} = -F_1 \cdot (\partial \mathbf{Y}_1/\partial \mathbf{t}) = +F_1 \sum_{\mathbf{i}=1}^{n} \xi_{\mathbf{i}} \dot{\mathbf{f}}^{\mathbf{i}} = -F_1 \sum_{\mathbf{i}=1}^{n} \lambda_{\mathbf{i}} \dot{\mathbf{f}}_{\mathbf{i}}$$

$$= -F_1 \lambda_{\mathbf{i}} \dot{\mathbf{f}}^{\mathbf{i}} + \sum_{\mathbf{i}=2}^{n} F_1 \cdot (\partial \mathbf{Y}_1/\partial \mathbf{Y}_{\mathbf{i}}) \dot{\mathbf{f}}^{\mathbf{i}} = -F_1 \dot{\mathbf{f}}^{\mathbf{i}} + \sum_{\mathbf{i}=2}^{n} (-F_{\mathbf{i}} \dot{\mathbf{f}}^{\mathbf{i}})$$

where $\mathbf{F}_{i} = \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$, $(\mathbf{f}^{i}/\mathbf{f}^{i})$ where $\mathbf{F}_{i} = \mathbf{a} \mathbf{F}/\mathbf{a} \mathbf{Y}_{i}$, $(\mathbf{i} \mathbf{v} = \mathbf{F}_{i} \mathbf{F}_{i})$.

production function (18) is

(26)
$$\underset{\text{commerces one}}{\text{HF}} = \sum_{\Sigma} \frac{F_{i}y_{i}}{\Sigma F_{i}y_{i}} \cdot \frac{\dot{\mathbf{f}}^{i}}{\mathbf{f}^{i}}$$
 as function and the second of the second of

of a near testor with the second of x_i and x_i and

which means that HF is a weighted average of the shifts in industry production functions. The HF reduces to T/T when all of the marginal rates of substitution and marginal rates of transformation become equal to the corresponding relative prices. In other words,

$$(27) \quad HF = T/T$$

is guaranteed in the case where the marginal conditions hold. On the other hand, from equation (25), we get

(28)
$$G\dot{F} = \sum_{\Sigma F_{i}Y_{i}} \frac{F_{i}Y_{i}}{\Sigma F_{i}Y_{i}} \cdot \frac{\dot{f}^{\perp}}{f^{\perp}} = \frac{\Sigma F_{i}Y_{i}}{\Sigma F_{i}Y_{i}} \cdot H\dot{F}$$

weighted average as in the case of P/P. Again, only when these exists no intermediate goods in the economy, GF can be regarded as a proper measure of shifts in the production function.

2.4. Growth Accounting Formulas

It is now clear that the productivity measurement based on the IO framework is theoretically better than that of the NIB basis not only in the industry level but also in the aggregate national level. That is to say, the growth accounting based on IO table is theoretically better than the growth accounting based on NIS at any level of aggregation.

In the next section, we will provide a growth accounting for the Philippine economy mainly by using the two inputoutput tables, so that it seems useful to summarize here the related computational formulas from the point of view of the growth accounting.

First, from equation (2), we get the relationship between output growth, input growth and residual growth for each inudstry:

(29)
$$\frac{y_{i}}{y_{i}} = \sum_{i=1}^{n} \frac{q_{k}y_{ki}}{q_{i}y_{i}} \cdot \frac{y_{ki}}{y_{ki}} + \sum_{j=1}^{m} \frac{p_{j}x_{ji}}{q_{i}y_{i}} \cdot \frac{x_{ji}}{x_{ji}} + \frac{T^{i}}{T^{i}}$$
 (i=1 ... n)

$$= (1 - \theta_{i}) \cdot \left(\sum_{k} \frac{q_{k}y_{ki}}{\Sigma q_{k}y_{ki}} \cdot \frac{y_{ki}}{y_{ki}} \right) + \theta_{i} \cdot \left(\sum_{j} \frac{p_{j}x_{ji}}{\Sigma p_{j}x_{ji}} \cdot \frac{x_{ji}}{x_{ji}} \right) + \frac{\dot{T}^{i}}{T^{i}}$$

where $\theta_i = \sum p_j x_{ji}/q_i y_i$ = value added ratio in the i-th industry. Note that, in the latter expression above, the two bracketted terms represent Divisia aggregation for the quantities of intermediate inputs and primary factor inputs respectively in the i-th industry. Second, for the aggregate national economy, we get the following growth rlationship from equations (13) and (29):

ry control of a graph of the control of the property of the section of the section of

(30)
$$\sum_{i} \frac{q_{i}y_{i}}{\Sigma q_{i}y_{i}} \cdot \frac{y_{i}}{y_{i}} = \sum_{i} \frac{q_{i}y_{i}}{\Sigma q_{i}y_{i}} \left(\sum_{k} \frac{q_{k}y_{ki}}{q_{i}y_{i}} \cdot \frac{y_{ki}}{y_{ki}} \right)$$

$$+\sum_{i} \frac{q_{i}y_{i}}{\Sigma q_{i}y_{i}} \left(\sum_{j} \frac{p_{j}x_{ji}}{q_{i}y_{i}} \cdot \frac{x_{ji}}{x_{ji}}\right) + \sum_{i} \frac{q_{i}y_{i}}{\Sigma q_{i}y_{i}} \cdot \frac{T^{i}}{T^{i}}$$

which is equivalent with the contract to the c

$$(31) \frac{\dot{y}}{y} = (1-\theta) \cdot \frac{\dot{U}}{U} + \theta \cdot \frac{\dot{x}}{x} + \frac{\dot{T}}{T} \quad [\text{See equations (14) and (15)}]$$

Third, the similar relationships for the aggregate economy on the NIS basis can be expressed from equation (16) as

(32)
$$\sum_{i=1}^{n} \frac{q_{i}Y_{i}}{\sum_{i=1}^{n} q_{i}Y_{i}} \cdot \frac{\dot{Y}_{i}}{Y_{i}} = \sum_{i=1}^{n} \frac{p_{j}X_{j}}{\sum_{i=1}^{n} p_{j}X_{j}} \cdot \frac{\dot{X}_{j}}{X_{j}} + \frac{\dot{p}}{p} \quad \text{or} \quad \frac{\dot{Y}_{i}}{Y_{i}} = \frac{\dot{X}_{i}}{X_{i}} + \frac{\dot{p}}{p}$$
Finally, from equation (31), we get

$$\frac{1}{\theta} \left(\frac{\dot{y}}{y} - (1-\theta) \frac{\dot{u}}{u} \right) = \frac{\dot{x}}{x} + \frac{1}{\theta} \cdot \frac{\dot{T}}{T}$$

which is equivalent with equation (32) since $P/P = (1/\theta) \cdot (T/T)$ from equation (17). This is the formula which transforms the growth accounting of the 10 basis into that of the NIS basis, at motter organic of it of dealer or amor bedreates to a Pregal Itamust be noted that gain the above formulas; any cop

aggregate variable is expressed in terms of Divisia index. The Divisia quantity in particular is useful since it nautos matically incorporates quality changes in components variables, provided that their quality elements can be reflected by their relative prices. 13/1 For example, if the classified data on employment and wage rate are available, we can construct the Divisia quantity for labor input (say, L). Of course, we

Example to the real of the first

know total employment (say, L'). Then, we can compute the ratio L/L' and regard it as the quality index of labor, provided that the relative wage rate is a good measure of relative efficiency or relative quality. The same is true for capital and output under the same premise. Crucial problems here are, of course, the availability of classified data on price and quantity and the plausibility of the premise.

3. Growth Accounting of the Philippines -- Measurement

In this section, we will provide a growth accounting of the Philippine national economy comparing two inputoutput tables, the 1965 table of National Economic Council
(NEC) and the 1969 table of National Economic and Development Authority (NEDA), and link the results to the corresponding measurement based on the national income
series of NEDA. For expository purposes, we will present,
first, simple computations concerning the latter (i.e.,
growth accounting based on NIS) only for the aggregate
economy and, then, we will discuss the data and the
results of comparison concerning the two input-output
tables (i.e., growth accounting based on the IO framework)
for each industry as well as for the aggregate economy.

To sel no estentee of the born of the order

3.1. Growth Accounting of the NIS Basis for the Aggregate

Only the work of Lampman [1967] is enough to be mentioned here as the reference. Since he provides two-point comparisons only (for 1955-65 and 1947-65), it seems worthwhile to construct annual estimates for each year in the postwar period. The results for 1957-74 are shown in Table 1.

Computations of the table are based on formula (32), where the aggregate output Y is simply replaced by real GNP while the primary factor inputs X; 's are simply represented by homogeneous labor L and homogeneous capital K (i.e., $X_1 = L$ and $X_2 = K$). Real GNP is, of course, from the NEDA National Income Series of latest version. It is the GNP at constant 1967 prices. It is an approximation to Y in the sense that it is not a Divisia quantity aggregated in terms of real expenditures on industry outputs. The data for L is total employment in October or in November which is based on the nationwide sample surveys of households. Since no surveys were conducted in 1964, 1969 and 1970, the annual compound growth rates for 1963-65 and 1968-71 are used to fill side up the missing part. The data for K is from Canlas, 10 Encarnación and Ho [1975]. They estimate a series of

海水 经国际公司 医克雷氏 化二氯磺基酚 医抗病 化二氯甲磺胺 化二烷 化氯磺基甲烷

Table 1. Growth Accounting of the NIS Basis, 1957-1974

		(%)
	$\dot{Y}/Y^{1}) = w_L^{2} \times \dot{L}/L^{3}$ + $w_K^{4} \times \dot{K}/K^{5}$	+ P /P
1957 1958	$5.1 = .44 \times 6.5 (2.9) + .56 \times 5.7 (3.2)$ $3.9 .44 \times 1.6 (0.7) .56 \times 6.4 (3.6)$	+ (-1.0) (-0.4)
1959	6.6 .44 \times 3.0 (1.3) .56 \times 5.9 (3.3)	(2.0) ((-1.3)
1960	1 54.0 11 56.7 17 17 17 17 17 17 17 17 17 17 17 17 17	(0.6)
1961 1962	5.6 44 x 5.6 (2.5) 56 x 5.7 (3.2)	(-0.1)
1963	7.0 .44 \times 1.7 (0.7) .56 \times 5.2 (2.9)	(3.4)
1964	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(-1.5) (0.9)
1965	5.2 .44 x 1.7" (0.7) .56 x 6.4 (3.6)	(-2.4)
1966	4.8 .44 x 8.3 (3.7) .56 x 6.3 (3.5)	(2.3)
1967	5.8 .44 $\times (-0.9)$ (-0.4) .56 \times 6.0 (3.4)	(3.0)
1968	5.2 .44 x (-3.6) (-1.6) .56 x 6.7 (3.8)	(-0.4)
1969	5.9 .44 x 6.2 (2.7) .56 x 6.5 (3.6)	(-0.4)
1970	5.7 .44 \times 6.2* (2.7) .56 \times 6.1 (3.4)	
1971	$6.29 \times 10^{-1}.44 \times 10^{-1}.25 \times 10^{-1}.256 \times 10^{-1}.2$	1.55% (0.3)
1972	4.2 .44 x 0.3 (0.1) .56 x 5.6 (3.1)	(1.0)
1973	9.8 .44 × 10.2 (4.5) .56 × 5.4 (3.0)	(2.3)
1974	5.8 .44 x (-0.3) (-0.1) .56 x 5.6 (3.1)	(2.8)

¹⁾ Real GNP = NEDA Statistical Yearbook 1975 (pp. 106-107), NEDA National Income Series (Number 3) [1975, p. 29], Canlas, Encarnación and Ho (1975, p. 29). 2) Labor share = NEC input-output table of 1965. 3) Total employment = NEDA Statistical Yearbook 1975 (pp. 52-53). 4) Capital share = 1 - wL.

en gran i vijenje selenja i nazak ilo de de 1 i en galida**r kom**ten

erekar venta er elektrika irangan herbyak elektrik irangan ke

grant of the first of the section of

⁵⁾ Real capital stocks = Canlas, Encarnacion and Ho [1975, p. 29].
*Intrapolations.

real capital stocks for the aggregate economy using average incremental capital-output ratio, real GNP at the starting year (1955) and the series of real capital formation. Their series is useful not only because there exists no nationwide survey of capital stocks or national wealth, but also because it is consistent with the national income statistics.

As can be seen from formula (32), the data for value shares of labor and capital (i.e., $p_i X_i / \sum p_i X_i$) are also needed in computations. However, the national income series does not provide separate estimates for "compensation of employees" and "entrepreneurial and property income of persons, so that the ratio of "wages and salaries" to total value added (GNP) in IO table is used for the labor share. $\frac{14f}{f}$ This means that the compensa tion of capital (or capital service price) includes indirect taxes as well as depreciations and "other value added". Indirect taxes may be interpreted as the inputs of government services and the use of the above ratio assumes that the quantity of such government services is proportiona to the quantity of capital inputs. There are three inputoutput tables available now. Correspondingly, the wages-GNP ratio in IO table takes three different values, i.e.,

.426 for 1961, .444 for 1965 and .410 for 1969. The ratio in the middle year 1965 is adopted here and the labor share is set equal to a constant .44 throughout the sample period.

The growth accounting of Table 1 shows considerable year-to-year fluctuations especially in productivity change and labor contribution. $\frac{15}{}$ However, if we demarcate the sample period into several appropriate subperiods, we can find some systematic changes in the average growth rates. Table 2 shows this demarcation and the corresponding average growth rates. In the demarcation, 1960-62 and 1970 are selected as the critical years, because the former is the period of decontrol and devaluation and the latter is the year of 1 foreign exhcange crisis and the floating of pesos. 16/ In the table, we can observe a slight trend accelaration in output growth and productivity growth. Especially, it seems remarkable that the productivity change jumps from zero to about 1% between pre-decontrol and post-A START CHEET DESIGNATION decontrol periods. This fact may be relevant to the conclusion of Williamson and Sicat [1968] that decontrol and devaluation contributed to the improvement of resource allocation. Their analysis is concerned about the technical progress in the manufacturing industry. We will

The second of th

Average Annual Growth Rates * cross descent of the seasons are strongly as in

					<u>})</u>
i jankāri L	Y/Y	.Ľ/,L	K/K	P/P	
1957-60	4.4	2 . 7	6.1	-0.2	. 12 . 7
1957-61	4.8	3.4	ыное . 4.17 5.9	-0.0	
1957-62	4.9	3.8	5.9	-0.0	
1961-69	5.4	3.0	6.0	0.7	1
1962-69	5.3	2.6	6.1	0.7	1
1963-69	5.2	2.7	6.1		
1970-74	6.3	4.5	5.7		
1963-74	5.7	3.1	6.0	1.0	
	5.4	3.4		0.6	18 1 - 14 1 40
. ere i	111, VIII	ngayan garanga	e di Santa	the Armety	i នាម

*Computed from Table 1.

Computed from Table 1.

Compu

refer to their paper later again in discussing the intra- and inter-industry technical progress.

3.2. Growth Accounting of the IO Basis (Data)

The 1965 and 1969 input-output tables (at producers' prices) have dimensions 51 x 51 and 60 x 60, respectively. $\frac{17}{}$ However, to simplify the analysis and to get stable estimates, we aggregate the two transactions tables into smaller 7 x 7 tables in accordance with the NEC and the NEDA-NCSO classification codes almost in the same way as Jurado and Encarnacion [1974], $\frac{18}{18}$ who analyze structural change in the Philippine economy using the 1961 and 1965 tables. The resulting seven sectors are: A processor of the sectors are:

(1) Agriculture, Fisheries and Forestry

[Agriculture]

(2) Mining and Quarrying

[Mining]

(3) Manufacturing

[Manufacturing]

(4) Construction

[Construction]

California i e caminado do caso de esta en como en com (5) Transportation, Communication, Warehousing and Storage, and Utilities [Transportation, etc.]

(6) Trade, Banking, Insurance and Real Estate : [Commerce]

(7) Private and Government (Serives) (Serives) The region of the factor of the control of the cont

For the resulting 7 x 7 tables, see the Appendix tables (where the transactions for final demands are omitted, since they are unnecessary in the present analysis).

For the aggregated seven-industry level, let us check up the data consistency between national income statistics and input-output tables. Table 3 shows this comparison between the NIS and the TO data in terms of net output or value added. It can be seen in the table that the two data indicate considerably big discrepancies in many sectors. Especially in commerce and services sectors, big discrepancies are observed in both years of 1965 and 1969. This is due to the gaps in Real Estate and Trade for the commerce sector and the treatment of imputed rent (ownership of dwellings) for the services sector (as is indicated in the lower half of Table 3). الإنوارة والمرادرة It seems interesting to observe that underestimation LATERAL GARAGE Villa: (or overestimation) of net domestic product at factor 4. 自身實際國 cost is cancelled by overestimation (or underestimation) hir or femoly. of depreciations and indirect taxes almost completely, resulting in very small discrepancies in the GNP estimates.

In spite of those big discrepancies in sectoral net output, we will employ the deflators implicit in the national income statistics (NIS deflators for sectoral outputs) to get the input-output structures expressed at constant 1967 prices. This is because it is attempted

					(million pesos)					
			196	5		1 9 6	9			
		N I S	IO	(NIS/IO)	N I S	10	(NIS/IO)			
1. 2. 3. 4. 5. 6.	Agriculture Mining Manufacturing Construction Transportation, etc. Commerce Services	6201 232 3400 758 786 2914 4571	5607 245 3184 835 829 5392 3833	(+10.6%) (- 5.3%) (+ 6.8%) (- 9.2%) (- 5.2%) (-46.0%) (+19.2%)	10605 530 5073 979 1078 4075 6645	588 5440 1278 1562	(+17.7%) (- 9.9%) (- 6.7%) (-23.4%) (-31.0%) (-44.2%) (+28.7%)			
ND	P at factor cost	18862	19927	(- 5.3%)	28985	30344				
8.	Net factor income from abroad	-123	-123		-2 85	-28 5				
NN	P or NI	18739	19804	(- 5.3%)	28700	30059	(- 4.5%)			
9.	Indirect taxes 1 ess Subsidies Depreciations	1491 1799	928 1185	(+60.7%) (+51.8%)	2297 3093	1884 2135	(+21.9%) (+44.9%)			
	GNP	22029	22227*	(- 0.9%)	34090	34077	(+ 0.0%)			
 7. 	Commerce Wholesale and Re Insurance, Banki Real Estate Services Government Servi Educational Servi Recreational Servi Personal Services Professional Servi Ownership of Dwo	ces ces ices ices ices	nbanking I	nst. gara	409	7299 4199 1020 2079 5165 2213 389 219 289 ** 762				
*	This figure includes	statistical	discrepan	cy (=310).		2 6 8 3				

^{*} This figure includes statistical discrepancy (=310).

** These figures may not correspond exactly to the NIS classification.

Sources: NEDA Statistical Yearbook 1975 (p. 101), NEDA National Income Series (Number 1) [1973, p. 61] and the two input-output tables.

GOLD LITTLE

in the present paper to provide a growth accounting of the IO basis as consistently as pessible with that of the NIS basis. The aggregation into seven industries above is also due to that reason. Table 4 shows the NIS deflators for sectoral outputs which are derived by the ratio of net domestic product by industrial origin to its real counterpart. Table 4 includes also the Mangahas-Encarnacion deflators, which are used in Jurado and Encarnacion [1974] for the same purposes. We will provide the results based on the latter deflators later for the sake of comparison. Here we note only the fact that, in the case of NIS deflators, price increase is bigger so that output growth becomes smaller than in the case of Mangahas-Encarnacion deflators.

The results of deflation using the NIS deflators are presented in Tables 5 and 6. The tables contain also the data for the inputs of labor and capital in each industry (L_i and K_i, i=1...7), so that all of the data necessary in growth accounting are provided in the tables except for the data of value shares which are derivable from the original (i.e., undeflated) input-output tables. Note that the labor inputs (sectoral employments) here are the ILO figures based on May series for which the 1969 data are available. No intrapolations are made for 1969 unlike the

This , will add the large and large trained

The test of the second control of the second control of the second control of the second control of the second

Table 4.

Deflators for Sectoral Outputs

(1967=1.000) Mangahas-NIS Deflators $\frac{1}{}$ Encarnación_{2/} Deflators 1965 1969 1965 1969 1. Agriculture .857 1.202 .866 1.136 2. Mining .826 1.132 .856 1.114 3. Manufacturing .926 1.054 .947 1.110 4. Construction .876 1.038 1.194 .971 5. Transportation, etc. .923 1.079 .929 1.062 6. Commerce .913 1.036 .915 1.019 7. Services .886 1.116 .917 1.059

^{1/}NEDA Statistical Yearbook, 1975 (pp. 100-103).

 $[\]frac{2}{\text{Mangahas}}$ and Encarnación [1972, p. 344].

edi įtub iemovenė tai kritsilofi

!	e service de la companya de la compa		NA.	Sugar San S	
		2 %			
;					
•				; ;	en e
1	Other			124.	ing the state of t
:	8200.	$\psi(0)$			$\label{eq:constraint} \left\{ \begin{array}{ll} (1,0) & \text{for } (1,0) & \text{for } (1,0) \\ (1,0) & \text{for } (1,0) & \text{for } (1,0) \\ \end{array} \right\} = \left\{ \begin{array}{ll} (1,0) & \text{for } (1,0) \\ \text{for } (1,0) & \text{for } (1,0) \\ \end{array} \right\}$
				7,42	gardine i serve esti e e i per el el
	· .b · . · .			v i v	
			A, 1 (
:		;			

A Contract of the Annual Contract of the Contr

[្]នាស់ នាស្វាស់ និងស្រាស់ ស្រែស្រែក្រុង និងស្រាស់ និងស្រាស់ ស្រែស្រែស្រាស់ និងស្រាស់ និងស្រាស់ និងស្រាស់ និងស្រ

Table 5. Input-Output Table, 1965 (at constant 1967 prices)

(millions of pesos)

П										1		
Subtotal 1)	4134.7	392.0	5102.5	88.5	803.1	2337.2	1369.4	14227.4	11128	82664	25040.9	39078.3
7	196.0	1.0	627.9	4.2	102.6	283.7	314.0	1529.4	1506	20666	4830.7	6394.8
9	1	1.1	207.0	47.9	179.3	487.5	439.4	1362.2	1184	10416	6525.6	7877.8.
5	11.0		404.4	2.1	125.4	132.2	86.1	761.3	410	9341	1111.8	1868.6
4	e 6	32.2	780.3	30.5	33.5	164.8	91.5	1142.1	315	6365	1027.1	2221.5
က	3635.1	354.0	2482.7	3.7	307.5	1027.6	359.1	8169.7	1191	14384	4360.9	12190.5
2	6.9	2.5	54.4	۳.	13.8	26.1	18.3	162.3	28	2149	312.6	492.4
-	276.4	1.2	505.6	1	41.3	215.2	8.09	1100.5	6393	19343	6872.2	8032.7
	1 Acriculture			4. Construction			7. Services	Subtotal2)	8. Labor 3)	9. 10. 11.	Subtotal ⁵⁾	Total ⁶⁾

pesos). 9 = Depreciation, 10 = Other value added, and 11 = Indirect taxes less subsidies in the original input-output table, 5) Real value added deflated by the NIS deflators (Table 4) except for the last which 8 = Wages and Salaries in the original input-output table. 4) Capital stocks at 1967 prices (millions of 1) Row sums. 2) Column sums. 3) Employment (thousands of persons). Source: ILO [1874, p.394]. is row sum. 6) Total output at 1967 prices deflated by the NIS deflators (Table 4) except for the last which is row sum.

						The state of the s	And the second of the second o

	•		·:				The second section of the second seco
5 2	53 (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4			- Andrews Company			
				· · · · · · · · · · · · · · · · · · ·			Market Service and the service of th
				Sage Sage Sage Sage Sage Sage Sage Sage	**************************************		1
· · · · · · · · · · · · · · · · · · ·			•				
				* 1			
			gerer et al.	·	:		; ;

Table 6. Input-Output Table, 1969 (at constant 1967 prices)

of pesos)	Subtotal 1)	5061.0	579.2	208.7	3098.5	•		105863 105863	31091.6	50930.5	
S S (millions of pesos)	40	213.5	1.488 907.68	4.0	297.	• •	1733	# # # # # # # # # # # # # # # # # # #	² 4950.5 €	6926.3	sector
raīas-	9 () 9 ()	93 d‱ • 7. 3	288.5		2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		1162	1 231 52	8043.1	10283.9	្រែក្រស់ ស្រួកសម្ពុជ្
11:39f	. ഹ		.3	0 0	146.1	888 888	432	15244	79	2677.2	t vorti
tia Nej	13 C	37.4	34.5	46.2		1428.0	998	0.013 0.013 0.013 0.013	1175.0	2452.9	z s ob Ingeno Riedi
វី១វិស្ត្រ ១០ ភូសិត	C	4203.6	535.4 4264.2	18,2	1324.8	11063.2	1352	5.2020	6602.0	18302.7	in Table 5
	. 2	6.9	4.0		45.3	278.0	54	4129	585.8	845.9	the same as
. 914 vau	Angel I Best	588.4	े 3.6 567 9		•	1625.9	6633	22655	7935.9	9440.6	4) 5) and 6): 1
aoi: 39 ia 31		1. Agriculture	2. Mining	_	5. Transp. etc. 6. Commerce	Services	8. Labor 3)	9. capital 4)	Subtotal ⁵⁾	Tota 16)	1) 2) 3) 4) 5]

case of growth accounting based on NIS which employs October-November series for total employment (L). The capital inputs (capital stocks at 1967 prices) for seven sectors here are the results of a crude guesswork. We have the data for total capital stocks (K) which is consistent with national income statistics (i.e., Canlas-Encarnacion-Ho series). We can compute the capital-output ratio for each of the seven industries $(k_i, i=1 \dots 7)$ from Maton, Paukert and Skolka [1975] which gives a detailed data on that ratio for 64 industries. $\frac{19}{}$ We can also compute the real net output $(V_i, i=1 \dots 7)$ of the IO basis by deflation. $\frac{20}{}$ The estimates of sectoral capital stocks in Tables 5 and 6 are the results of prorating total capital stocks to each industry by the following formula:

$$K_{i} = \frac{k_{i}V_{i}}{\Sigma k_{i}V_{i}} \cdot K \quad \text{or} \quad \frac{K_{\hat{i}}}{K} = \frac{k_{i}V_{i}}{\Sigma k_{i}V_{i}}$$

The discrepancy between $\Sigma k_i V_i$ and K is not negligible. The former is smaller than the latter by 38% in 1965 and by 40% in 1969. This is due to the relatively small values of k_i 's, since the average capital-output ratios for the whole economy (i.e., $\Sigma k_i V_i / \Sigma V_i$) are only 2.39 in 1965 and 2.43 in 1969, while the ratios of K to real

GNP are 3.35 and 3.47 respectively. $\frac{21}{}$ However, the estimated capital stocks in the manufacturing sector here are, at least, not contrary to the available census data for the establishments with five or more workers in that sector. $\frac{22}{}$

3.3. Growth Accounting of the IO Basis (Measurement)

Table 7 summarizes the final results both for industries and for aggregate national economy. indicates the linkage to the measurement of the NIS basis. Computations of the industry growth accounting are based on formula (29), where the primary factor inputs x; 's are represented by labor input L_i and capital input K_i (i.e., $x_{1i} = L_i$ and $x_{2i} = K_i$, i=1 ... 7). Note that labor and capital here are assumed to be homogeneous within each industry but not so between industries, because (average) wage rates and (average) rates of return to capital differ between industries. Growth rates are computed by using 1965 values as base, while value shares here are the arithmetic averages of those derived from 1965 and 1969 input-output tables. This is an approximation to formula (29) or other formulas expressed in terms of continuous variables, so that certain approximation errors are unavoidable in computations. Growth accounting of the total

Table 7. Growth Accounting of the IO Basis, 1965-1969

```
(%)
                          \frac{y_i}{y_i} = (1-\theta_i) \sum_{\Sigma q_i y_{i,i}} \frac{q_k y_{ki}}{\Sigma q_i y_{i,i}} \cdot \frac{y_{ki}}{y_{i,i}} + \theta_i w_L
1. Agriculture:
                     17.5 = .152 \times 59.9 + .390 \times 3.8 + .458 \times 17.1 + (-0.9)
                                         (9.1)
                                                           (1.5)
2. Mining:
                         72.0 = .337 \times 72.8 + .201 \times 86.2 + .463 \times 92.1 + (-12.4)
                                                          (17.3)
                                                                             (42.6)
                                  .641 \times 38.1 + .106 \times 13.5 + .254 \times 53.1 + (10.8)
Manufacturing:
                                                         (1.4)
                                                                             (13.5)
                                       (24.4)
                         10.4 = .529 \times 28.1 + .240 \times 16.2 + .231 \times 16.4 + (-12.2)
4. Construction:
                                       (14.9)
                                                           (3.9)
                         43.3 = .366 \times 16.6 + .276 \times 5.4 + .358 \times 63.2 + (13.1)
5. Transp. etc.:
                                        (6.1)
                                                            (1.5)
                                                                             (22.6)
                         30.5 = .195 \times 63.1 + .261 \times (-1.9) + .545 \times 24.0 + (5.6)
6. Commerce:
                                                          (-0.5)
                                       (12.3)
7. Services:
                           8.3 = .265 \times 35.1 + .487 \times 15.1 + .249 \times 4.0 + (-9.3)
                                                            (7.3)
Total economy \frac{2}{v}: \frac{y}{y} = (1-\theta) \cdot \frac{U}{U} + \theta w_L \cdot \frac{L}{L} + \theta w_K \cdot \frac{K}{K} + \frac{U}{V}
(Divisia
 aggregation):
                     31.3 = .374 \times 40.7 + .268 \times 8.6 + .359 \times 29.8 + [3.0]
Total economy (NIS base): \frac{3}{100}
From input-output tables:
                                       25.6 = .428 \times 8.6 + .572 \times 29.8 + [4.8]
(Divisia aggregation)
                                                     [3.7]
                                       23.6 = .428 \times 5.4 + .572 \times 28.1 + [5.2]
Fron national income
                                        [2.3]
Series:2/
(Simple aggregation)
\frac{1}{}See formula (29) . (w<sub>Li</sub>
                                   = labor share in the i-th industry and w_{Ki}=1-w_{Li}).
\frac{2}{}See formula (31) . (w<sub>L</sub>
                                   = labor share in the total economy and w_K = 1-w_L).
\frac{3}{}See formula (32) . (w<sub>L</sub>
                                   = labor share in the total economy and w_{\nu} = 1 - w_{\tau}).
\frac{4}{} See formula (33).
```

 $\frac{5}{\text{Similar}}$ to Table 1.

economy is the weighted average of the components industry growth accountings with values of total industry outputs as weights (see formula (30) which is equivalent with formula (31)). It is the result of Divisia aggregation, so that not only output (y) and intermediate input (U) but also labor (L) and capital (K) are expressed in terms of Divisia quantities.

In Table 7, growth accounting of the NIS basis is shown in two ways for the total economy. One is derived from the input-output tables by using formula (33) and is expressed in terms of Divisia quantities. The other is based on the national income series and corresponds to the growth accounting of Subsection 3.1. $\frac{24}{}$ The difference between the two depends on the method of aggregation in constructing the quantity data, i.e., the Divisia aggregation or the simple aggregation (which means the simple sum of components quantity variables). For example, in the case of labor inputs, the growth rate of Divisia quantity is 8.6% while that of total employment (sum of employment in each industry) is 5.4%. The gap between the two growth rates can be interpreted as the growth rate of labor quality, which is 3.2% in this case, provided that the relative (average) wage rates between industries are a good measure for the

relative efficiencies or qualities of labor between industries. 25/ A similar interpretation may be made also for capital and output, noting, however, that capital stocks in each industry are the results of a guess work and real GNP is the sum of the real expenditures but not the sum of the real industrial outputs delivered to final demands.

In Table 7, a considerable growth in productivity is observed between 1965 and 1969 for the aggregate economy. It is 3% (or 0.7% at the annual compound rate) on the IO base, while it is about 5% (or 1.0% at the annual compound rate) on the NIS base. The manufacturing sector has the biggest positive contribution $(3.6\% = .3336 \times 10.8\%)$ to this increase in aggregate productivity, since its productivity growth (10.8%) is one of the biggest and its value share (i.e., the weight .3336 in aggregation) is dominant among others. $\frac{26}{}$ In the manufacturing sector, gorwth of intermediate inputs (38.1% in Divisia quantity), growth of labor input (13.5%) and growth of capital input (53.1%) are considerably large but, still, a large productivity increase is observed due to a much larger growth in total output (50.1%). The services sector, on the other hand, has the biggest negative contribution (-1.4% = .1499 x (-9.3%)) to the increase in aggregate productivity by the

in each industry, input growth minus output growth means the growth in the corresponding input coefficient (See equation (6)). In the manufacturing sector, for example, the growth rates of input coefficients are -12.0% for intermediate goods (in the weighted average sense), -36.6% for labor and +2.0% for capital, so that the productivity increase in the manufacturing sector is heavily dependent on the intermediate-goods-saving and labor-saving technologies. 27/ The same is true for the sector of transportation, communication, storage and utilities, and the similar interpretations may be made for the other sectors.

In Table 7, productivity decrease or negative productivity change is observed for many industries. This is mainly due to the relatively slow growth of output in those industries. Our industrial outputs in real terms are obtained by deflation using the NIS deflators (Table 4). The NIS deflators indicate sharper price increases in almost all industries compared to the Mangahas-Encarnacion deflators (Table 4). Therefore, it seems worthwhile to provide the growth accounting based on the latter deflators for the sake of comparison. Table 8 shows the final results, which are obtained completely in the same way as the results of Table 7 except for the use of different

Table 8. Growth Accounting of the IO Basis, 1965-1969 (Using Mangahas-Encarnación Deflators)

```
BELL TOOK BUILD TO BUILD AND THE STATE OF THE
\overline{	ext{Industries}} , \overline{	ext{gas}} , \overline{	ext{constant}} , \overline{	ext{constant}} , \overline{	ext{constant}} , \overline{	ext{constant}}
   1. Agriculture: 25.7 = .152 \times 65.1 + .390 \times 3.8 + .458 \times 18.4 + (5.8)
   (9.9) (1.5) (8.4)
2. Mining: 81.1 = .337 \times 71.9 + .201 \times 86.2 + .463 \times 87.2 + (-0.4)
   (24.2) (17.3)

3. Manufacturing 45.8 = .641 \times 40.9 + .106 \times 13.5 + .25
                                                                  (40.4)
                                            + .106 \times 13.5 + .254 \times 41.3 + (7.
     316 (1.4) 2 34 (10.5) 45
   4. Construction: 40.8 = .529 \times 29.5 + .240 \times 16.2 + .231 \times 40.7 + (11.8)
      58.50 - 29.58 - 8 - 2 - - - - - - (15.6) - 58 - 5000 (-3.9) + 650 + 6 - 64 (-9.4) +0
   5. Transp. etc.: 46.5 = .366 \times 17.5 + .276 \times 5.4 + .358 \times 59.2 + (17.6 \times 17.5)
   6. Commerce: 33.0 = .195 \times 71.4 + .261 \times (-1.9) + .545 \times 21.1 + (8.8)
                                 (13.9)
                                                 (-0.5)
                                                                  (11.5)
   7. Services: 18.1 = .265 \times 38.5 + .487 \times 15.1 + .249 \times .7.4 + (-1.5)
                                 (10.2)
                                                 (7.3)
Total economy (IO base)
   (Divisia trajuo te la la la la propertione e en la compaction to the later than
    aggregation): 35.4 = .374 \times 44.1 + .268 \times 8.6 + .359 \times 27.6 + (6.4)
                                 (16.5)
                                                 (2.3)
Total economy (NIS base)
                            Action in the configure seems for the configuration
   From input-output tables:
    (Divisia aggregation) 30.2 = .428 \times 8.6 + .572 \times 27.6 + (10.69)
               From mational income series 23.6 \pm 90 (3) .428 \times 65.4 (+ .572 \times 28.160+ (5.
    (Simple aggregation)
                                                  (2.3)
                                                                   (16.1)
       to the select damparison Table Canows to the en-
```

na ar vikio'mon tomiczne empleción Palua

(See the footnotes to Table 7), and anapyra and and a statement

deflators. 28/ The new results show, of course, upward revisions in output growth resulting in the corresponding upward revisions in productivity growth with the exception of the manufacturing industry. 29/ The observed productivity increase is positive in many industries and, even if it is negative, it is very small in absolute value. In this sense, the results of Table 8 may be regarded as more plausible than those of Table 7. Taht means that the NIS deflators may not be so appropriate as the Mangahas-Encarnacion deflators. It seems to the author that the plausibility or reliability in the national income series of NEDA should be checked at least about the data on "net domestic product by industrial origin at 1967 prices," since the NIS deflators here are defined as the ratios of nominal values to real values in industrial net products.

progress can be decomposed into two parts: intraindustry technical progress, which is a weighted average
of the component industry technical progress, and interindustry technical progress, which arises from an interindustry shift in resources. Noting that his concept of
output is net or value added and his concept of aggregate
output is the simple sum of components net outputs (in
real terms), we can apply his analysis to our case of

production to pro-

input-output framework which allows explicitly for intermediate inputs. In other words, total (aggregate) actechnical progress can be computed by using the last and y reolumns (subtotal) of Tables 5; and 6, while intra- od. industry technical progess can be computed by taking a weighted average of the components industry productivity changes (Table 7) with the output (quantity) shares in 1965 as weights. Inter-industry technical progress is, then, the difference between the above two. The results are summarized in Table 9, which includes also the results based on the Mangahas-Encarnacion deflators for the sake of comparison. Though some approximation errors mentioned before are contained in the computations. 30/ it can be said, that a positive inter-industry technical progresses is observed between 1965 and 1969. This result on the aggregate economy is consistent with the comprehensive study of Williamson and Sicat [1968] who conclude, after careful observations on inter-industry technical progress in the manufacturing sector, that decontrol and devaluation had important positive effects on the better resource allocation in that sector. Their conclusion and our result, however, may have to be discounted to some extent in the sense that the inter-industry technical progress vanishes if the Divisia method is used in a large section of the progress was a section of the progress of the progress was a section of the progress aggregation.

Table 9. Total Intra-industry and Inter-industry Technical Progress

of the first and the second of the second of

								(%)
						4 1		, , , , , , , , , , , , , , , , , , , ,
		Technical		Output	_	Contributions	of	
		progress		growth		intermediate inputs	1.abor	capital
v	Tally and a state of		1 1 1	,		7 1 180 180 180		:
	Total					(14.1 +		
/1\	= Intra-	4				18 18 18 18 18 18 18 18 18 18 18 18 18 1		
(1)		2.6	=	30.3	_	(14.9 +	2.4 +	10.5
			· ==	eres .		0.8 +	1.0 +	0.4
			-			, while		1 1,1
						1	. De 1 - 2	
	Total	7.9	. ==	34.7	-	(15.3 +	1.4 +	10.1
	= Intra-					(16.2 +		
r s	+ Inter- industry	1.3	•	7 - 1 - 2 mg		0.9 +	0.9 -	0.6
	Market Style 19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				State of the State		4 1 4.

^{(1) =} based on the NIS deflators.

n was a servicing of the control of the property of the control of

^{(2) =} based on the Mangahas - Encarnación deflators.

4. Concluding Remarks

In this paper, we have presented a methodological framework for growth accounting on the basis of inputoutput (IO) tables and provided a corresponding measurement on the Philippine economy using the 1965 and 1969 input-output tables of NEC and NEDA. We have also attempted to show explicitly the linkage to the conventional measurement which is based on national income statistics (NIS). Growth accounting of the NIS basis may be operationally better than that of the IO basis in the light of data availability. However, as our methodological analysis has shown, the latter is theoretically better than the former in the light of the treatment of In the growth accounting, therefore, intermediate goods. measurement of the NIS basis must be checked and supplemented by the measurement of the IO basis as much as This has been pursued in our empirical analysis possible. of the Philippine economy. Our measurement, of course, cannot be said to be very reliable due to the insufficient availability of basic data. Especially, capital stocks by industry are the results of a guess work. Neither different types of labor (classified by age, sex, education etc.) nor different types of capital (structures, equipments,

inventories, land etc.) are allowed for. Working hours and utilization rate of capital are not introduced, either. 31/Our measurement, therefore, must be revised and improved in accordance with the improvement of the basic data both in quality and in availability.

A Than I great

(noith to

Appendix. Proof of Equations (13), (14) and (17)

$$\begin{split} \frac{\dot{T}}{T} &= -\left(\sum_{ik} \frac{q_k y_{ki}}{\Sigma q_i y_i} \cdot \frac{\dot{a}_{ki}}{a_{ki}} + \sum_{ij} \frac{p_j x_{ji}}{\Sigma q_i y_i} \cdot \frac{\dot{b}_{ji}}{b_{ji}}\right) \quad \text{(equation (12))} \\ &= -\sum_{i} \frac{q_i y_i}{\Sigma q_i y_i} \cdot \left(\sum_{k} \frac{q_k y_{ki}}{q_i y_i} \cdot \frac{\dot{a}_{ki}}{a_{ki}} + \sum_{j} \frac{p_j x_{ji}}{q_i y_i} \cdot \frac{\dot{b}_{ji}}{b_{ji}}\right) \\ &= \sum_{i} \frac{q_i y_i}{\Sigma q_i y_i} \cdot \left(\frac{\dot{y}_i}{y_i} - \sum_{k} \frac{q_k y_{ki}}{q_i y_i} \cdot \frac{\dot{y}_{ki}}{y_{ki}} - \sum_{j} \frac{p_j x_{ji}}{q_i j_i} \cdot \frac{\dot{x}_{ji}}{x_{ji}}\right) \\ &= \sum_{i} \frac{q_i y_i}{\Sigma q_i y_i} \cdot \frac{\dot{y}_i}{y_i} - \sum_{ik} \frac{q_k y_{ki}}{\Sigma q_i y_i} \cdot \frac{\dot{y}_{ki}}{y_{ki}} - \sum_{ij} \frac{p_j x_{ji}}{\Sigma q_j y_i} \cdot \frac{\dot{x}_{ji}}{x_{ji}} \\ &= \sum_{i} \frac{q_i y_i}{\Sigma q_i y_i} \cdot \frac{\dot{y}_i}{y_i} - \frac{\Sigma q_i U_i}{\Sigma q_i y_i} \cdot \sum_{k} \frac{q_k U_k}{\Sigma q_i U_i} \cdot \sum_{i} \frac{q_k y_{ki}}{q_k U_k} \cdot \frac{\dot{y}_{ki}}{y_{ki}} \\ &= \sum_{i} \frac{q_i y_i}{\Sigma q_i y_i} \cdot \frac{\dot{y}_i}{y_i} - \frac{\Sigma q_i U_i}{\Sigma q_i y_i} \cdot \sum_{k} \frac{q_k U_k}{\Sigma q_i U_i} \cdot \frac{\dot{U}_k}{U_k} - \frac{\Sigma p_j X_i}{\Sigma q_i Y_i} \cdot \frac{\dot{x}_j}{y_i} \\ &= \sum_{i} \frac{q_i y_i}{\Sigma q_i y_i} \cdot \frac{\dot{y}_i}{y_i} - \frac{\Sigma q_i U_i}{\Sigma q_i y_i} \cdot \sum_{k} \frac{q_k U_k}{\Sigma q_i U_i} \cdot \frac{\dot{U}_k}{U_k} - \frac{\Sigma p_j X_i}{\Sigma q_i Y_i} \cdot \frac{\dot{x}_j}{\Sigma p_j X_j} \cdot \frac{\dot{x}_j}{X_j} \\ &= \sum_{i} \frac{q_i y_i}{\Sigma q_i y_i} \cdot \frac{\dot{y}_i}{y_i} - (1-\theta) \cdot \sum_{i} \frac{q_i U_i}{\Sigma q_i U_i} \cdot \frac{\dot{U}_i}{U_i} - \theta \cdot \sum_{j} \frac{p_j X_j}{\Sigma p_j X_j} \cdot \frac{\dot{x}_j}{X_j} \end{aligned}$$

(equation (14))

 $= \frac{y}{y} - (1-\theta) \cdot \frac{U}{U} - \theta \cdot \frac{x}{y}$

$$\frac{\dot{P}}{P} \quad \sum \frac{q_{i}Y_{i}}{\Sigma q_{i}Y_{i}} \cdot \frac{\dot{Y}_{i}}{Y_{i}} - \sum \frac{p_{j}X_{j}}{\Sigma p_{j}X_{j}} \cdot \frac{\dot{X}_{j}}{X_{j}} \qquad \text{(equation (16))}$$

$$= \frac{\Sigma q_{i}Y_{i}}{\Sigma q_{i}Y_{i}} \cdot \sum \frac{q_{i}(\dot{y}_{i} - \dot{u}_{i})}{\Sigma q_{i}Y_{i}} - \sum \frac{p_{j}X_{j}}{\Sigma p_{j}X_{j}} \cdot \frac{\dot{X}_{j}}{X_{j}}$$

$$= \frac{1}{\theta} \left(\sum \frac{q_{i}Y_{i}}{\Sigma q_{i}Y_{i}} \cdot \frac{\dot{y}_{i}}{y_{i}} - \sum \frac{q_{i}U_{i}}{\Sigma q_{i}Y_{i}} \cdot \frac{\dot{U}_{i}}{U_{i}} \right) - \sum \frac{p_{j}X_{j}}{\Sigma p_{j}X_{i}} \cdot \frac{\dot{X}_{j}}{X_{j}}$$

$$= \frac{1}{\theta} \left(\sum \frac{q_{i}Y_{i}}{\Sigma q_{i}Y_{i}} \cdot \frac{\dot{y}_{i}}{y_{i}} - (1 - \theta) \cdot \sum \frac{q_{i}U_{i}}{\Sigma q_{i}U_{i}} - \theta \cdot \sum \frac{p_{j}X_{j}}{\Sigma p_{j}X_{j}} \cdot \frac{\dot{X}_{j}}{X_{j}} \right)$$

$$= \frac{1}{\theta} \cdot \frac{\dot{T}}{T} = \frac{\Sigma q_{i}Y_{i}}{\Sigma q_{i}Y_{i}} \cdot \sum \frac{q_{i}Y_{i}}{\Sigma q_{i}Y_{i}} \cdot \frac{\dot{T}^{i}}{T^{i}} = \sum \frac{q_{i}Y_{i}}{\Sigma q_{i}Y_{i}} \cdot \frac{\dot{T}^{i}}{T^{i}} \qquad \text{(equation (17))}$$

THE THE PERSON OF THE PERSON O THE REPORT OF THE PARTY OF THE $\frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}$

- 42 -

Appendix Table 1, Input-Output Table, 1965 (producers' prices)

							(militons	(millions of pesos)
	,1	7	က	4	ß	9	7	Subtotal
Agriculture	236.9	5.9	3115.3	8.0	9.4	ı	168.0	3543.4
Mining		2.1	292.4	9.92	0.1	6.0	0.8	323.8
Manufacturing	468.2	87.4	2299.0	722.6	374.5	191.7	581.4	4724.9
Construction	1	0.3	3.2	26.7	1.8	42.0	3.7	77.5
Transp. etc.	38.1	12.7	283.8	30.9	115.7	165.5	94.7	•
Commerce	196.5	23.8	938.2	150.5	120.7	445.1	259.0	2133.9
Services	53.9		318.2	81.1	76.3	389.3	278.2	1213.3
Subtotal	594.5	148.5	7250.2	1046.3	698.5	1234.5	1385.8	12758.2
We some W								
Salaries	2834.7	93.0	1189.0	470.6	479.6	2091.7	2765.1	9923.7
Depreciation	289,9	26.5	278.7	42.4	125,8	321.7	8.66	1184.9
Other value		-						
added	2772.5	152,1	1995.4	364.6	349.5	3300.5	1068.4	10003.0
Indirect taxes		-				,	•	i
less Subsidies	- 7.6	-13.5	575.1	22.1	71.3	244.0	36.4	827.8
(Discripancy)							(0.016)	(210.2)
Statistical.	ı	ı	-	1	1	1	(310.3)	(5.016)
Subtotal	5889.5	258.2	4038.2	899.7	1026.2	5957.9	4280.0	22349.7
Total	6884.0	406,7	1288.4	1946.0	1724.7	7192.4	5665.8	35107.9

Source: NEDA, Statistical Yearbook of the Philippines 1975 (pp. 480-483).

	N.,
360	

CONTROL OF THE PROPERTY OF THE

Appendix Table 2. Input-Output Table, 1969 (producers' prices)

٠,,			# # # # # # # # # # # # # # # # # # #				(million	(millions of pesos)
H		2	(0.00) (0.00) (0.00) (0.00)	7	9	10000000000000000000000000000000000000	2 3	Subtotal
707.3		8.3	5052.7	44.9	13.4	1 1 2 2	256.6	6083.3
4.		4.5	606.1	39.0	3	0 700	0.I 0.E	8016.0
၁၉၄ ၂		183.4	21.7	55.2	3.6	149.4	18.4	249.2
100.3		26.0	440.4	46.3	169.3	367.9	172.9	1323.1
220.9		46.9	1372.5	199.0	151.4	911.2	308.2	•
178.3		25.6	344.6	150.4	120.8	588.8	490.7	1899.2
1809.4		295.6	12332.5	1525.8	946.6	2321.5	2204.9	21436.3
4171.9		188.9	2036.2	694.7	788.5	2452.7	3751.3	14084.1
467.5		86.7	509.1	73.7	271.3	513.3	207.2	2134.8
.4839.6		389.5	3403.6	583.6	773.6	4845.8	1413.7	16259.4
59.2		-11.9	1009.7	45.1	108.6	520.8	152.6	1884.1
								- 1
9538.2		663.1	6958.5	1403.0	1942.1	8332.6	5524.8	34362.4
11347.6	1	958.7	19291.0	2928.8	2888.7	10654.1	7729.8	55798.7
						11		

Source: NEDA, 1969 Input-Output Tables of the Philippines (1975, pp. 4-9).

FOOTNOTES .

- * The author is research associate at Kyoto University
 Center for Southeast Asian Studies and visiting
 associate professor at the University of the Philippines
 School of Economics. The author wishes to express his
 appreciation to Professor Harry T. Oshima for his kind
 instructions on data and research materials related to
 his paper. This study was supported by The Japan Foundation.
- For the growth accounting in general, see the two comprehensive surveys on methodology and measurement made by Nadiri [1970, 1972].
- A similar analysis using the 1961 input-output table is left to be finished by those who know the table very well, since it is said that the 1961 table contains a misleading data compilation for capital formation. Palance [1974] attempts to analize the change in technical coefficients essentially in the same way as the present paper using the 1961 and 1965 tables. However, her analysis is incomplete to be called a growth accounting since it deals with intermediate goods and imports only leaving primary factor inputs unexplained. The study of Lampman [1967] is the first attempt to provide a growth accounting for the Philippine (postwar) economy. See his paper for the Denison type explanations.
- This view was expressed in the author's previous paper (Ezaki [1971]). It will be restated here compactly. The same view is proposed recently by Star [1974].
- 4/ Imports are assumed to be perfectly competitive so that they appear in the final demands side only. Indirect taxes can be regarded as the inputs of government services. They are treated as proportional to capital inputs in the actual measurement.
- 5/ For the Divisia index, see Jorgenson [1966], Jorgenson and Griliches [1967], Richter [1966], etc.
- 6/ Strictly speaking, these marginal conditions should be written as

$$q_i f_k^i \leq q_k \quad (k=1 \dots n)$$
 and

$$q_i f_j^i = p_j \quad (j=1 \dots m)$$

By conventions (or as a result of profit maximization under non-negativity restrictions), the input quantities $(y_{ki} \text{ or } x_{ji})$ are regarded as zero when the inequalities hold above, so that the identity (1) is always valid and consistent with the marginal conditions.

7/ Leontief et. al. [1953], pp. 31-35.

, all many and the first of the Albert Alber

- 8/ See the appendix for the proof.
- 9/ See the appendix for the proof.
- 10/ Y in the equation (16), of course, means Divisia quantity for final demand so that Y must be measured in the expenditure side of NIS. Sometimes Y is measured in the factor input side by using real value added, but this is not precise even as the conventional measure. Note that equation (16) corresponds to the aggregate productivity change based on NIS. The service of the ser
- See the appendix for the proof. The real results are $\frac{\lambda_0 T}{\lambda_0 T}$
- Let us consider a constrained maximization problem where the objective function $z=f(x_1,x_2,\dots,x_n)$ is a second with a second particle z

$$Z = f(x_1, \dots, x_n)$$

is maximized subject to the constraints

$$g^{i}(x_{1} \dots x_{n}, b_{1} \dots b_{s}) = 0$$
 (j=1 ... m)

under the given parameters $b_1 cdots b_s$. Then we can prove easily the following useful property:

$$\frac{\partial Z^*}{\partial b_k} = \sum_{j} \lambda_{j} \cdot \frac{\partial g^{j}(x_1^* \dots x_n^*, b_1 \dots b_s)}{b_k} \qquad (k=1 \dots s)$$

where Z* and x_i *'s are the optimal solutions and the Lagrangean function is $L = Z + \sum_j a_j (x_1 \dots x_n, b_1 \dots b_s) \quad (\lambda_j = \text{Lagrange multiplier}).$

$$L = Z + \sum_{j}^{\lambda} j$$
, $g^{j}(x_{1}, x_{n}, b_{1}, b_{s})$ ($\lambda_{j} = Lagrange multiplier$).

This is a little extension of Hadley [1964, Ch. 3], for example. i inggan ing manggapan ang mga saga saga 🗳

- 13/ See Ezaki and Jorgenson [1973a, 1973b] for the reasoning.
- Note that this ratio allows exactly neither for the labor part of "entrepreneurial income of persons" nor for the labor income of unpaid family workers.
- MI so bus retained the et at a top . . We get a very similar result even when we use the ILO data for total employment and the wages - GNP ratio of Canlas, Encarnacion and Ho [1975, Table 1, R].
- 16/ See Power and Sicat [1971] The the Millard Power and Sicat [1971]
- The NEDA Statistical Yearbook 1975 provides a 12x12 transactions table for 1965, which is used here in computations. We employ the IO tables at producers' prices simply by reason of convenience.
- The treatment of "Unallocated Sector" in the 1965 table is different in that we include it in the "Services" sector without prorating it to all industries.

- The 64 k's are weighted averaged into the 7 k's using values added in 1965 IO table as weights.

 The results are: $k_1 = 2.04$, $k_2 = 5.00$, $k_3 = 2.39$, $k_4 = 4.50$, $k_5 = 6.07$, $k_6 = 1.15$, and $k_7 = 3.10$.
- 20/ The results are included in Tables 5 and 6, i.e., the row of subtotal corresponding to real value added.
- The average incremental capital-output ratio used in estimating K is 3.34 (Canlas, Encarnacion and Ho [1975, p. 22]). The average capital-output ratio in 1965 computed by Paukert, Skolka and Maton [1975, p. 222] is 2.376 which is (should be) almost identical with our result above.
- See "total book value of fixed assets" in Philippine Yearbook 1975 (Table XVI.2, p. 574) and compare it with "census value added" there.
- It is again assumed that inputs of government services such as "indirect taxes less subsidies" are proportional to capital inputs (See Tables 5 and 6).
- The correspondence is not precise due to the different data on labor share and labor input. The exact correspondence can be given by the following growth accounting (%):

- The relative wage rates between industries (based on the average of the 1965 and 1969 average wage rates in each industry) are:
 - (1) 0.428, (2) 0.268, (3) 1.000, (4) 1.355, (5) 1.188, (3)
 - (6) 1.549, and (7) 1.598

where the average wage rate of manufacturing sector (3) is taken as base. Note that, in Table 7, the Divisia quantity for total labor inputs is give by the growth rate which is the weighted average of the components growth rates. When we construct the aggregate quantity in efficiency units by using the above relative wage rates, we get 9090 (thousand persons) for 1965 and 9783 (thousand persons) for 1969, so that its growth rate is 7.6% and the corresponding quality change becomes 2.2% which is 1% smaller than in the case of Table 7.

Contributions to the aggregate productivity change by seven industries are as follows:

(1)
$$-0.2\% = .1998 \times (-0.9\%)$$
, (2) $-0.2\% = .0144 \times (-12.4\%)$,

(3)
$$3.6\% = .3336 \times 10.8\%$$
, (4) $-0.7\% = .0539 \times (-12.2\%)$,

(5)
$$0.7\% = .0505 \times 13.1\%$$
, (6) $1.1\% = .1971 \times 5.6\%$, (7) 11.4% = .1499 x (-9.3%)

(7)
$$1.4\% = .1499 \times (-9.3\%)$$

The sum of the above seven contribution is, of course, equal to the aggregate productivity charge 3.0%.

Antonogia de la como a ser Growth accounting of the manufacturing sector can be rewritten as follows based on equation (6):

$$10.8\% = .641 \times 12.0\% + .106 \times 36.6\% + .254 \times (-2.0\%)$$

$$[7.7\%] \qquad [3.9\%] \qquad [-0.5\%]$$

- Note that the stimates of industrial capital stocks are slightly different as a result of using different deflators. Note also that the difference in the growth rates of total capital stocks between Divisia quantity (27.6%) and simple sum (28.1%) is negligible in this.
- 29/ Contributions to the aggregate productivity change (6.7%) by seven industries are:

(1)
$$1.2\% = .1998 \times 5.9\%$$
, (2) $-0.0\% = .0144 \times (-0.8\%)$,

(3)
$$2.6\% = .3336 \times 7.7\%$$
, (4) $0.6\% = .0539 \times 11.9\%$,

- (g.c.) (g (5) $0.9\% = .0505 \times 17.4\%$, (6) $1.6\% = .1979 \times 8.1\%$,

Therefore, in the present measurement, the contribution of the manufacturing sector is not so dominant as in the previous measurement.

- 30/ This is true especially for the aggregation of intermediate inputs.
- See Bautista [1974] for capital utilization in the manufacturing sector.

Contraction of the Contraction o

A comparison for the second with the first product of the second of the

i de la victoria de la composición de la

$\underline{R} \underline{E} \underline{F} \underline{E} \underline{R} \underline{E} \underline{N} \underline{C} \underline{E} \underline{S}$

- R.M. Bautista, "The Electricity-based Measure of Capital Utilization in Philippine Manufacturing Industries: Estimation and Analysis," Philippine Review of Business and Economics, Vol. XI, No. 1, June 1974, pp. 13-34.
- D.B. Canlas, J. Encarnación and T.J. Ho, "Sectoral Employment, Income Distribution and Consumption: A Macromodel with an Anput-Output Structure," IEDR-UPSE Discussion Paper No. 75-16, October 1975.
- M. Ezaki, "A Note on the Measurement of Productivity Change," Discussion Paper No. 25, The Center for Southeast Asian Studies, Kyoto University, April 1971.
- M. Ezaki and D.W. Jorgenson, "Measurement of Macroeconomic Performance in Japan, 1951-1968," in
 K. Ohkawa and Y. Hayami (eds.), Economic Growth
 the Japanese Experience Since the Meiji Era,
 Vol. 1, Tokyo, Japan Economic Research Center,
 1973a, pp. 286-361.
- "Makuro Seisansei Henka no Sokutei, 19511968 (Measurement of Aggregate Productivity Change,
 1951-1968)," in K. Ohkawa and Y. Hayami (eds.),
 Nihon Keizai no Choki Bunseki (Long-Term Analysis
 of the Japanese Economy, Tokyo, Nikkei Newspaper Co.,
 1973 b, pp. 182-198.
- G. Hadley, Nonlinear and Dynamic Programming, Reading, Mass., Addison-Wesley, 1964.
- International Labor Office, Sharing in Development: A
 Programme of Employment, Equity and Growth for the
 Philippines, Manila, NEDA Production Unit, 1974.
- D. W. Jorgenson, "The Embodiment Hypothesis," <u>Journal of Political Economy</u>, Vol. LXXIV, No. 1, February 1966, pp. 1-17.

- D. W. Jorgenson and Z Griliches, "The Explanation of Productivity Change," Review of Economic Studies, Vol. 34, July 1967, pp. 249-283.
- G. M. Jurado and J. Encarnacion, "Some Exercises with the National Economic Council Input-Output Tables,"

 NEDA Journal of Development, Vol. I, No. 1, First Semester 1974, pp. 55-79.
- R. J. Lampman, "The Sources of Post-War Economic Growth in the Philippines," Philippine Economic Journal, Vol. VI, No. 2, Second Semester 1967, pp. 170-188.
- W. Leontief et. al., Studies in the Structure of the American Economy, Oxford, Oxford University Press, 1953.
- M. Mangahas and J. Encarnacion, 'A Production Submodel of the Philippine Economy, 1950-69," Philippine Economic Journal, Vol. XI, No. 2, Second Semester 1972, pp. 249-277.
- B. F. Massel, "A Disaggregated View of Technical Change,"

 Journal of Political Economy, Vol. 59, December 1961.
- J. Maton, F. Paukert and J. Skolka, Redistribution of Income, Patterns of Consumption and Employment A Case Study for the Philippines, ILO Working Paper, 1975.
- M. I. Nadiri, "Some Approaches to the Theory and Measurement of Total Factor Productivity: A Survey," Journal of Economic Literature, Vol. VIII., March 1970, pp. 1-24.
 - Total Factor Productivity: A Brief Survey, Review of Income and Wealth, Series 18, No. 12, June 1972, pp. 129-154.

- National Census and Statistics Office, Philippine Yearbook 1975, Manila, 1975.
- National Economic and Development Authority, NEDA National Income Series, Number 1, 2 and 3, Manila, 1973, 1974 and 1975.
- NEDA Statistical Yearbook of the Philippines 1975, Manila, 1975.
- , 1969 Input-Output Tables of the Philippines, Manila, 1975.
- National Economic Council, "The 1965 Interindustry (Input-Output) Accounts of the Philippines," The Statistical Reporter, Vol. XV, No. 3, July-September 1971.
- E. H. Palanca, "Structure of the Philippine Economy: A Comparative Study of the 1961 and 1965 Input-Output Tables," Philippine Economic Journal, Vol. XIII, No. 1, First Trimester 1974, pp. 41-56.
- F. Paukert, J. Skolka and J. Maton, "Redistribution of Income, Patterns of Consumption and Employment A Case Study for the Philippines," JERC and CAMS, Income Distribution, Employment and Economic Development in Southeast and East Asia, Japan Economic Research Center (Tokyo) and The Council for Asian Manpower Studies (Manila), July 1975, pp. 197-226.
- J. Power and G. P. Sicat, The Philippines: Industrialization and Trade Policies, (OECD Report), Oxford University Press, 1971, pp. 1-134.
- M. K. Rithter, "Invariance Axioms and Economic Indexes," Econometrica, Vol. 34, October 1966, pp. 739-755.

UNIO ADDICE CONTRA LA CARRAGA CARRA CARRA

- S. Star, "Accounting for the Growth of Output," American Economic Review, Vol. 64, No. 1, March 1974, pp. 123-135.
- J. G. Williamson and G. P. Sicat, "Technical Change and Resource Allocation in Philippine Manufacturing: 1957-1965," IEDR-UPSE Discussion Paper No. 68-21, June 1968.