Institute of Economic Development and Research SCHOOL OF ECONOMICS University of the Philippines

Discussion Paper No. 76-24

October 5, 1976

INTERRELATED PRODUCTS AND THE ELASTICITY OF EXPORT SUPPLY IN DEVELOPING COUNTRIES

ROMEO M. BAUTISTA

NOTE: IEDR Discussion Papers are preliminary versions circulated privately to elicit critical comment. References in publications to Discussion Papers should be cleared with the author(s).

INTERRELATED PRODUCTS AND THE ELASTICITY OF EXPORT SUPPLY IN DEVELOPING COUNTRIES

載者1.0 Proget Cotton for Existing to 1000 to 1000 and 100

. కూడిముందుకుండాని కురుతుండానికుండును కుంటు కురుకు కురుకు కురుకుండును ఎందిముందు. అని అయిన కారుకు కురుకు కురుకు మార్కెట్లు

Romeo M. Bautista* 10 0000 to february 10000 to the manager

1. Introduction who have the production of a production of the contract of the

Although primary products, i.e., from the agricultural and extractive sectors, comprise a large portion of merchandise exports of most developing countries (or "less developed countries", LDCs for short), it is frequently the case that commodities of varying degrees of processing based principally on these primary products are also being exported. Examples of export commodities so related come easily to mind; logs, lumber, plywood and other wood products; metallic ores and concentrates, ingots and various metal products; raw and refined cane sugar; rubber and rubber products; copra, coconut oil, and other coconut-based commodities. The interdependence among - such products is generally ignored or assumed away in most existing empirical studies on LDC export behavior. Thus export supply functions are usually estimated and analyzed in reference to highly aggregative commodity classes on to individual export commodities considered independently of one another. This is clearly unsatisfactory in a situation where the cross-substitution effects among related products are significant. The estimated export supply elasticities may not then reflect the actual responsiveness of exports to past changes in the price and activity variables or be relevant in the quantitative assessment of the probable effect on exports of policy changes or external disturbances affecting these variables. The form the contract of the contract

The objective of this paper is to examine the interrelations among production, prices and exports in the markets for two related export commodities --

TO THE THE COURSE OF THE THE PERSON THE LEVEL OF one being a primary product and the other a processed commodity which uses in production the primary product as principal material input. A "small country" model is presented that specifies, in addition to the two export supply functions, a domestic demand equation for the manufactured commodity, a fixed coefficient technological relation, a price equation linking the domestic prices of relevant commodities, and certain identities. Some comparative static properties of the model are examined pringing out the negative vindirect effects (resulting from the interactions among the endogenous variables) of changes in the exchange rate and foreign currency prices on export response and identifying the parameters that determine the magnitude of the pward bias of export supply elasticities based on single equation models. Under certain conditions it is shown that a currency devaluation would favor an increase in exports of the processed commodity relative to the primary product. In such a case the well-known tendency of LDCs to overvalue atheir currencies has the effect of discriminating against exports of processed comm tol de tacque March Milliant dities among related export products

In application to Philippine exports of copra and coconut oil, the behavioral equations of the model are estimated using annual data in the postwar period. Comparison of the direct price effects reflected in the estimates of the structural coefficients with the total effects, as indicated by the corresponding reduced form coefficients, shows evidence of strong interaction effect in the case of copra export supply, which is found to be own-price inelastic, the substantial cross-substitution effect renders negative the net effect of an exchange rate change. A corollary finding is that the net response of coconut oil exports to a currency devaluation is substantially positive, implementation of the Philippine peso during the post

period has unduly favored the exporting of copra (the primary product) relative to coconut oil (the processed commodity).

TV noitophore into at attempts for white add and an impact with the The Model

Commodity A is a primary product that can be exported directly or processed domestically into commodity B for home use (either in final consumption or as an intermediate product) or for export. Assuming no barriers to export trade, yet appears as a property of the export supply functions may be represented by (E)

$$X_A = f(R \cdot P_{xA}^*, P_{hA}, Y_A)$$
 (1)

companyation of composity i.

In section, which is presented the resective priors of the i^{∞}/\mathbb{R}

where, in reference to either A.or B. (xubbil about Laranes a not aroubout to an analysis and an action of the control of the

X = quantity of export flow

= foreign currency export price

(8) noithing the pool of the contract of the c

foreign currency

solution to the commodity, in domestic currency has been price of the commodity, in domestic currency has been present present present asserts it seems to ease to present present present asserts it seems to be supplied to the commodity of the c

tuqtuo sitember Y = assumption that I've proceed to be of the time time propertion type:

and the signs of the partial derivatives are given by $\begin{pmatrix} \mu \end{pmatrix}$

 $f_1(=\partial f/\partial R \cdot P_{\chi A}^*) > 0, \quad f_2(=\partial f/\partial P_{hA}) < 0, \quad f_3(=\partial f/\partial Y_A) > 0,$ as one to transmit with the A. Arabid the tenth of the regularity of the problem

 $g_1 > 0$, $g_2 < 0$ and $g_3 > 0$.

point of view of the producers of either commodity, the domestic and foreign markets are not perfectly substitutable (Bautista, forthcoming). For any given output of each commodity, the amount exported is determined by the levels of the export price in domestic currency and the domestic price, which proxy

epico (rodica escape sa o escape de pita are la escape indicator escape secondicione

for the profitability of exporting relative to domestic sale.) A more restric will tive formulation would be that the share of exports to total production X/Y febble odd of each commodity depends solely on the relative price R·P*/P_h; this is the case of the homogenous export supply function. For the small country, which is our concern here, P* is exogenously determined.

The domestic market demand for the processed good B is given by

$$H_{B} = j(P_{hB}, P_{C}, E)$$
(3)

SIT CONTRACTOR OF THE STATE OF

where

(1)

H_B = amount of home consumption of commodity B

P_c = price of competing consumer products (or a general price index)

The second of th

E = expenditure or income variable

and $j_1 < 0$, $j_2 > 0$ and $j_3 > 0$. If B is an intermediate good, equation (3) would represent a derived demand function.

Considering the low level of processing that typically characterizes LDC manufactured exports, it seems reasonable for present purposes to make the simple assumption that B's production technology is of the fixed proportion type:

$$\mathbf{Y_B} = \mathbf{u} \cdot \mathbf{H_A} \tag{4}$$

$$\mathbf{Y_{B}} = \mathbf{u} \cdot \mathbf{H_A} \tag{4}$$

where u is the yield per unit of the input A and H_{A} is the amount of home consumption of commodity A.

Assuming zero imports and changes in stocks for either commodity, domestic consumption plus the amount exported equals total production:

$$\text{Vas act} = (\text{gain}_{\mathbf{A}}^{\text{perform}}, \text{id}_{\mathbf{A}}^{\text{perform}}, \mathbf{A}^{\text{perform}}, \mathbf{A}^{\text{perform}}, \mathbf{A}^{\text{perform}}) = (\mathbf{5})$$

Sievel of ve beside that I letter positioners do stropped about to des

$$\mathbf{Y}_{\mathbf{B}} = \mathbf{H}_{\mathbf{B}} + \mathbf{X}_{\mathbf{B}}$$
where the distance of the proof of the p

To close the system, a price equation is postulated linking the domestic price of commodity A to the average revenue from the production of B and any by-products Z:

noide restain we find
$$2\pi \cos P_{h\dot{A}}$$
 is $\cos P_{h\dot{B}}$ is $\sin PZ$ is some and a relation by each of (7)

where PZ is the price of by-products, s is the yield of Z per unit of input A and MM stands for the marketing margin and production costs other than PhA.

Equations (1) - (7) contain seven endogenous variables, namely, X_A , X_B , PhA, PhB, HA, HB, and YB. Domestic output of the primary product A is assumed predetermined (as are the remaining variables of the model), which allows for the following possibilities: (1) existence of governmental restrictions on domestic production, e.g. logs in some Southeast Asian countries (motivated in this case by environmental concerns and the need to promote exports of wood are of the propose drive value and the need to promote exports of wood are of the value and the need to promote exports of wood manufactures); (2) long gestation period characterizing the production of some LDC primary exports, especially the perennial crops and mining products; and (3) other reasons for the widely observed inelastic supply response of primary er vigger imeine e products (at least in the short run) as discussed, for example, in Cooper ar ba hoədmən ilim Asrbitanıs Aşdon fizolikê s. (1971). Such assumption would not be justified if Y can be explained endogencusly in an essential way, i.e., involving other variables of the model. The system is static in that full adjustment of the behavioral equations and Durametricina amon artistration of actual uncomment of the clearing of markets are attained in each time period considered.

3. Some Comparative Statics

In examining now some comparative static properties of the model, our main interest is in the export response to changes in the exchange rate and foreign currency export prices. Consider first an increase in Pt XA, the rest of the exogenous variables assumed to remain constant. The direct effect will

be an increase in the quantity exported of commodity A; this in turn will reduce the amount available for the domestic production of commodity B, which is part of an adjustment process producing a secondary or indirect effect on $X_{\mathbf{a}}$ and additionally a cross-substitution effect on $X_{\mathbf{p}}$, among other interaction ing tingger magnitudes, self of the region of the common stage of the term of the control of the semantic

The total effect of a change in A's foreign currency export price on the amount of A exports is given by

where

the solution as a transfer of
$$\frac{\mathbf{x}}{\mathbf{x}}$$
 (i) axistence of government as transfer of $\frac{\mathbf{x}}{\mathbf{x}}$ (register of action of $\frac{\mathbf{x}}{\mathbf{x}}$) and $\frac{\mathbf{x}}{\mathbf{x}}$ (register of action of $\frac{\mathbf{x}}{\mathbf{x}}$) and the residual concepts of $\frac{\mathbf{x}}{\mathbf{x}}$ (register of action of the solution of $\frac{\mathbf{x}}{\mathbf{x}}$) and the residual concepts of $\frac{\mathbf{x}}{\mathbf{x}}$ (register of the residual concepts of $\frac{\mathbf{x}}{\mathbf{x}}$).

be with agreement over the interval and sense of the sen

be anhA(=f2PhA/XA) = A's export supply elasticity with respect to sits our domestic price

(5) other ransons for the widely of the Lintis which is acceptable to the model its density of export supply elasticity with respect to its approximate of export sprice with respect to its approximate of export sprice.

n (=g P /X) = B's export supply elasticity with respect to its domestic price

nyB(=g3YB/XB) = B's export supply elasticity with respect to domestic output

Dome speith on feather of Fernish to case tenjon like hot is at those of

ehB(=j_PhB=08) = B's own-price elasticity of domestic demand.

The term 1/1+\alpha is an adjustment factor that should be multiplied to the partial elasticity n to obtain the total effect on X of a given change in P*. The necessary and sufficient condition for a > 0 is that Y = n B > 0. A > 0. A SHOW A SHO which is likely to be met in practice. This will be assumed from hereon, in which case the adjustment factor is less than one. The indirect effect is negative and n (representing the direct effect) will overstate the "true" export response given in equation (8). This upward bias is larger the higher is the (absolute) value of nhA, the lower B's domestic demand and export supply elasticities with respect to its domestic price, and the higher the proportion of A outputabeing exported. The society to remark the finder of the particular of the society of the

The effection X can be shown to be as follows: the street of the street

The first
$$\frac{\partial \mathbf{d} \mathbf{X}_{\mathbf{B}}^{\dagger} \mathbf{X}_{\mathbf{B}}^{\dagger}}{\partial \mathbf{d} \mathbf{x}_{\mathbf{A}}^{\dagger}} = \frac{\mathbf{n}_{\mathbf{x}_{\mathbf{A}}^{\dagger}} \mathbf{X}_{\mathbf{A}}^{\dagger}}{(\mathbf{e}_{\mathbf{h}_{\mathbf{B}}}^{\mathbf{n}} \mathbf{y}_{\mathbf{B}}^{\mathbf{h}} + \mathbf{n}_{\mathbf{h}_{\mathbf{B}}}^{\mathbf{n}} \mathbf{y}_{\mathbf{B}}^{\mathbf{h}})} = \frac{1}{\mathbf{n}_{\mathbf{A}}^{\dagger}} \frac{\partial \mathbf{d} \mathbf{x}_{\mathbf{A}}^{\dagger}}{\partial \mathbf{x}_{\mathbf{A}}^{\dagger}} \frac{\partial \mathbf{d} \mathbf{x}_{\mathbf{A}}^{\dagger}}{\partial \mathbf{x}_{\mathbf{A}}^{\dagger}} \frac{\partial \mathbf{d} \mathbf{x}_{\mathbf{A}}^{\dagger} \mathbf{x}_{\mathbf{A}}^{\dagger}}{\partial \mathbf{x}_{\mathbf{A}}^{\dagger}} \frac{\partial \mathbf{d} \mathbf{x}_{\mathbf{A}}^{\dagger}}{\partial \mathbf{x}_{\mathbf{A}}^{\dagger}} \frac{\partial \mathbf{x}_{\mathbf{A}}^{\dagger}}{\partial \mathbf{x}_{\mathbf{A}}^{\dagger}} \frac{\partial \mathbf{x}_{\mathbf{A}}^{\dagger}}{\partial \mathbf$$

where Isvius wilsofyish at ognoting that
$$\frac{\mathbf{X}_{\mathbf{A}} \circ \mathbf{X}_{\mathbf{B}}}{\mathbf{K}}$$
 for the large $\mathbf{X}_{\mathbf{B}}$ and $\mathbf{X}_{\mathbf{B}} \circ \mathbf{X}_{\mathbf{B}} \circ \mathbf{$

With n vBXB < YB again, K < 0 and the effect on the amount exported of commodity B is negative. Thus an increase in the export price of A will have an unfavorable influence on XB which, from equation (9), is in part determined by the magnitude of A's export supply elasticity nature rooms of end to the record of the end of the end

Considering now an increase in the foreign currency export price of commodity B (the other exogenous variables of the model remaining unchanged), the cross-substitution effect on XA is given by

$$\frac{d \overset{\mathsf{M}}{\mathsf{A}} / \mathsf{X}_{\mathsf{A}}}{d \mathsf{P}_{\mathsf{XB}}^{\mathsf{A}} / \mathsf{P}_{\mathsf{XB}}^{\mathsf{A}}} = \frac{-\mathsf{n}_{\mathsf{XB}} \mathsf{n}_{\mathsf{h} \mathsf{A}}}{\mathsf{K}} \times \frac{\mathsf{N}_{\mathsf{B}}}{\mathsf{B}} \tag{10}$$
which is negative, recalling that $\mathsf{K} < \mathsf{O}$.

The total effect on the amount exported of commodity B is

$$\frac{dx_B/x_B}{dP_{xB}^*/P_{xB}^*} = n_{xB} \frac{1}{1 + \beta}$$
 (11)

where

$$\beta = \frac{X_{B}}{H_{B}} \cdot (n_{hB} - n_{yB}n_{hA}\frac{X_{A}}{H_{A}})/(e_{hB} + n_{hA}\frac{X_{A}}{H_{A}}\frac{Y_{B}}{H_{B}}) \geq 0$$
 (11a)

depending on the relative values of the elasticities nhA, nhB and nyB, and export share in the domestic output of A. The "adjustment factor"

1/1+6 in equation (11) can be less than or greater than one, and hence the direction of the indirect effect on B's export response is ambiguous.

While changes in foreign currency prices represent an external influence on exports of a small country, variations in the exchange rate, which also affect export supply through the induced change in local currency export prices, are in the domain of domestic policy. Within the framework of our model, an exchange rate change is analytically equivalent to a simultaneous proportionate change in the foreign currency export prices of A and B. From equations (8) - (11), it is clear that, depending on the relative magnitudes of the own-price, and cross-substitution effects, export supply of either commodity may respond positively or negatively to a change in the exchange rate. One cannot rule out therefore a perversely negative export response to a currency devaluation in a small country with interrelated export products.

Under the assumption of homogeneous export supply functions, $m_{xA} = m_{A} + m_{A}$

(-)

$$\frac{dx_{A}/x_{A}}{dR/R} = n_{xA} \cdot \frac{1_{A}^{H}}{1 - (\frac{n_{xA}^{H}A}{e_{hB}^{H}A} + \frac{n_{xB}^{H}B}{e_{hB}^{H}B})_{\text{nights of the part of holds}}$$
(12)

$$\frac{dX_{B}/X_{B}}{dR/R} = \frac{n_{xB} - n_{xA}H_{A}/X_{A}}{1 - (\frac{n_{xA}X_{A}}{e_{hB}H_{A}} + \frac{n_{xB}X_{B}}{e_{hB}H_{B}})^{1}}.$$
(13)

$$r = \frac{8}{n_0} \cdot (n_{BB} - n_{yB} n_{bM} \frac{x_{A}}{H})/(a_{E_B} + c_{BB} \frac{x_{A}}{h} + \frac{2}{n_{BB}} + \frac{2}{n_{B$$

As might be expected, the net effect of an exchange rate change on the amount exported of either commodity is lower than what the partial elasticities would indicate. The magnitude of this upward bias is related directly to the export shares in the domestic production of A and B, and inversely to the comprise elasticity of demand for commodity B. From equation (13), B's export response is also seen to be affected negatively by the induced change in X_A; this result is not surprising since any increase in the amount exported of the primary product A (due to say, a devaluation of the domestic currency) implies, under the assumptions of the model, a commensurate reduction in the output of the processed commodity B. These considerations would seem to warrant the conclusion that the effectiveness of currency devaluation in improving the trade balance of developing countries is reduced by the interrelated nature of some of their principal export

commodities A and B to an exchange rate change is given by

isodindaele vil frame
$$\frac{dX_{A}/X_{A}}{dR/R}$$
 = $\frac{1}{n_{xB}/n_{xA}}$ in the relation of the relation of the second value of

which may be positive or negative according as n_{xB}/n_{xA} is greater or less than X_A/A From a development policy viewpoint, it is also of interest to see whether

Through a space using the company black of the company of 08 yields of equivalently and
$$n_{xB}/n_{xA} - X_A/H_A \gtrsim 1$$
, or equivalently through the property and the company of the compan

If n xB(n xA' is greater then YA'A, which is not unlikely considering the greater price responsiveness of LDC entrepreneurs in activities involving higher degrees of processing, then currency devaluation would favor an increase in the amount exported of the processed commodity B relative to the primary product A. In such a case currency overvaluation, which is prevalent among developing countries (cf. Little Scitovsky and Scott, 1970), effectively discriminates against the exporting of processed commodities among related export products. This exchange rate policy would then be contrary to LDC policy efforts to lessen primary product exports in the contrary of manufactured goods.

Here not such as the contrary of the such as the contract of the section of the such as the contract of the section of the such as the contract of the section of the sectio

The postwar experience of the Philippines with respect to copra (dried coconut meat) and coconut oil (which is extracted from copra) provides an interesting case study by which to illustrate empirically and give quantitative expression to the interrelations among production, home consumption, exports and prices of the primary product and processed commodity described in the above model. Copra and coconut oil have long been major contributors to the country's export earnings, accounting for about 30 per cent of the

Application to Philippine Exports of Copra and Cocomit cill Homeway

period. The local market is also a significant outlet for these commoda transmit is obtained by the period of the

annual revenue from merchandise exports throughout most of the postwar

Although roughly 60 per cent of world exports of indigenous coconut products orginate from the Philippines, coconut oil constitutes only about

14 per cent of world trade in fats and oils. Because of the strong substitutability of coconut oil in the international market with other vegetable oils and perhaps also with petrochemical products used in the manufacture of synthetic detergents (Librero, 1971), the volume of Philippine copra and coconut oil exports can not be considered a major determinant of the international prices of these commodities of The off bequivalent terms United States imports of Philippine copramand coconut bil represent less than 10 per cent of the domestic consumption of soybean cottomseed and groundfut oils? Similarly Philippine exports of copra and coconstoll to Western Europe constitute a relatively small component (about 15 per cent) of the latter's annual consumption of vegetable cils (including palm kernel, groundnut and soybean unque), cil p der variables have been access en us weighted storsses (alio . view In applying the model to Philippine exports of copra and coconut oil; three behavioral relationships need to be estimated, namely, the export supply functions for copra and coconut of and the domestic demand function for coconut oil. The assumed exogeneity of copra output is suggested by the following considerations: (i) coconut is a perennial crop, requiring six to eight years from the time of planting for the tree to bear fruit; (ii) the yield of eccount trees has in the past not been influenced by copra price; the significant determinants of yield (expressed in muts per bearing tree) having been found to be the level of rainfall and occurrence of typhoons (Nyberg, 1968; pp. 97-102); and (iii) copra accounts for about 95 per cent of domestic coconut production. The following values to be assigned to the technological parameters of the model are based on the average coconut oil and

copra meal yields per unit quantity (metric ton) of copra crushed au = 1 3 3 40 and 18 = 350.

form, using ordinary least squares (OLS) and two-stage least squares (TSLS) on annual data for the sample period 1952-1973. The variables appearing in the estimated equations and elsewhere in the model are described in Table 2, and the data sources are given in Appendix 2. In view of an earlier finding (Bautista, forthcoming) that the price effects on export supply of copra and coconut oil extend to the succeeding year in a linear fashion (based on the regression results of alternative specifications on lagged responses to price changes using Almon's (1965) estimation technology, all price variables have been expressed as weighted averages of current—and preceding—year values with weights .667 and .333, respectively.

Serial correlation of the error terms appeared significant in the initial regressions for each equation and hence the Cochrane-Orcutt (1949) iterament tion technique was used, the initial value of the autoregressive coefficient cient determined from a six-point grid search.

The estimated coefficients from the OLS and TSLS results are not markedly different generally, suggesting that the simultaneous equation bias is anotherry substantial. Although a few of the estimates are only marginally significant, the signs of the coefficients are as expected and the implied delasticities (at the mean values over the sample period) seem credible.

oconut production. The fillwing values has a set of the recendence of the recendence of the recently set of the reduction of the set of the reduction of the set of the reduction of the set of the se

Estimation Results

Table 1 (concluded)

; , QHB = 83.2 - .779 PHB + .504 PHC + 1.189 CE (iii (.90)(-1.78) (1.69)(3.90) -.438 .296 .649 $\bar{R}^2 = .597$ D.W. = 1.68 ρ = .436 Estimation technique: TSLSCO TABLE TO THE TECHNIQUE TO THE THE TECHNIQUE TO THE TECHNIQUE T $\frac{280 + 360 + 100 + 230 + 230 + 200 + 200 + 200 + 200}{100 + 200 + 200 + 200}$ Notes: Numbers in parentheses are t-values of regression coefficients. Elasticities at the means are shown underneath the t-values. OLSCO and TSLSCO are, respectively, ordinary least squares and two-stage least squares, with Cochrane-Orcutt iterations. $\Delta S_{\rm eff}(t) \approx -100$ for t = -100 and t = -100 for t = -1000 for 1: / Commence of the contract of th (Miles CARLO SER SANDON CONTRACTOR 111) oran are called the other and The He was through the continue

1100 -001

and the second

1. 45

and a section of the forest transfer of the Table 2

ved Dose on the entire is eat the stable to be even extent through a serior entire

Definition of Variables

Endogenous variables with any nemitar variables are nemitar variables and nemitar variables and nemitar variables are nemitar variables.

dred it toposic haka acci

tomes, with taking a svitain was a second of

QXA = quantity of Philippine exports of copra, in million kilograms

QXB = quantity of Philippine exports of coconut oil, in million kilograms

PHA = domestic wholesale price of copra, in pesos per hundred kilograms

PHB = domestic wholesale price of coconut oil, in pesos per hundred kilograms

QHA = home consumption of copra, in million kilograms

QHB = home consumption of coconut oil, in million kilograms

QYB = domestic production of coconut oil, in million kilograms

. - ജൂൺടെ സുന്ന് ഉത്തിയിലുന്ന ക്രാസ് ആയ് സ്ക്രസ് സ്ഥാന വര്ത്ത്രം നിന്നു. മുത്തിൽ നിന്നിൽ വര്യത്ത് നിന്നിൽ ജ്യൂൽ

Exogenous variables. The visitor desorror independent of the content of the particle of the p

RPXA* 5 effective exchange rate multiplied by the unit value (U.S. dollars, f.o.b.) of copra exports, in pesos per hundred kilograms

RPXB* = effective exchange rate multiplied by the unit value (U.S. dollars, f.o.b.) of coconut oil exports, in pesos per hundred kilograms

PHC = consumer price index in Manila (1965 = 100)


QYA = domestic production of copra, in million kilograms

CE = index of real personal consumption expenditures (1965 = 100)

PZ = domestic wholesale price of copra meal, in pesos per hundred kilograms

mar si lun de made de electrició que y cen

*Like: In the second special in this case where the person of the person of the second

olerate and the common account of the common common sequence of the common common common sequence of the common co

ියැත්තමට න්පාල වර්ගම් ගරන වෙනින්න සිටි

Reduced Form Coefficients (TSLS Results)

e egy a e e egy er er egytende

Committee of the

indogenous ariables	RPXA*	RPXB*		ous Varial QYA		PZ	MM
c oa dop <mark>ráxy</mark>	2.524	-2.149	305	.625	662	962	2.748
dect.	(.174)	(227)	(-,038)	(1.070)	(076)	(030)	(.049)
QXB	-1.410	2,153	-,246	.209	532	15.537	-1.535
कर्सक संवेदिय	(408)	(.954)	(128)	(1.503)	(526)	(.069)	(114)
PHA ^{DDOD B}	.169	.638	.091	025	.196	.286	816
	(.170)	(.982)	(.164)	(624)	(.328)	(.128)	(-,211)
PHB	.264	.997	.142	039	.307	101	.287
Final 1	(.154)	(.891)		(565)	(.293)	(026)	(.043)
QHA STORES	-2.524	2.149	.305	.375	.662	.962	-2.748
	(244)	(.319)	(.053)	(.902)	(.107)	(.042)	(069)
QHB.	206 (068)	-,777 (390)	.441 (.259)	.031 (.252)	.956 (.522)	.078	224 (019)
QYB 8.5 V	-1.616	1.376	.195	.240	.423	.616	-1.759
	(248)	(.324)	(.054)	(.916)	(.108)	(.042)	(_{7.} 070)

Note: Corresponding elasticities at the mean values are in parentheses.

Paradot of the control of the control of the copy of the copy of the control of the control of the copy of the cop

Leafer to decrease the control of th

obtained above. In addition, exports of coconut oil will be reduced (by 4.08 per cent), again as indicated in the earlier comparative static analysis. The other interaction effects consist of increases in the domestic prices of both copra and coconut oil (by 1.70 and 1.54 per cent, respectively) and reductions in the home consumption of the two commodities and the domestic output of coconut oil. Notice finally that the induced rise in the domestic price of copra has a negative feedback on copra exports, which explains the observed direction of the indirect effect.

A 10 per cent increase in the export price of coconut oil, with they other exogenous variables remaining constant, would eventually raise coconut oil exports by 9.54 per cent, which is substantially lower than the andirect effect of a 15.21 per cent increase implied by the partial elasticity. Moreover, exports of copra will decrease by 2.27 per cent via the cross-substitution effect. As might be expected, the domestic prices of the two commodities will increase (quice significantly at that -- by nearly (+ "5 : (595.) €000.77 300 a 10 per cent) while home consumption of coconut oil will decrease (by 3.9 (gyper cent). (800.) 1.41 1842.-)

As suggested above, the effects would be identical to that of a simultaneous 10 per cent increase in the foreign currency export prices of the two commodities. Thus the direct effect on export supply consists of increases of 2.24 per cent for copra and 15.21 per cent for coconut oil; the total effect, on the other hand, is seen from Table 3 to consist of a reduction in copra exports by .53 (=2.27 - 1.74) per cent and an increase in coconut oil exports by 5.46 (=9.54 - 4.08) per cent. The large discrepancy between the direct and total effects reflects the significance of the interaction effects of an exchange rate change on Philippine exports

periodilitati attali para en kon eminerali i encolor com en ci

of coconut products. The negative net response of copra exports illustrates the possibility indicated earlier that the negative cross-substitution effect of a currency devaluation could outweigh the positive direct effect on certain export commodities of a small country. From these results one may infer that the overvaluation of the Philippine peso throughout most of the postwar period (Baldwin, 1975) has favored the exporting of copra at the expense of coconut oil exports.

For chronically foreign exchange-constrained LDCs like the Philippines, perhaps the important policy question has to do not so much with the export response of individual commodities to an exchange rate change but with the effect on total export earnings. With constant foreign currency export prices of copra and cococnut oil, the effect on export revenue (in foreign currency) from these two commodities is equal to the (value-share) weighted average of the proportionate changes in export quantities. Based on the mean values over the sample period, the calculated elasticity of export earnings from copra and coconut oil with respect to the exchange rate is .108, which is much lower than either of the estimated own-price elasticities for the two export-commodities (.224 for copra and 1.521 for coconut oil, from Table 1). Thus failure to include interaction effects could result in a substantial overestimation of the effect of exchange rate changes on Philippine export revenue from copra and coconut oil.

The term of the first for the expected by a constant class of the constant

deply mently by the element distinguished by their collectives been

. Comment of the comment of the second of th

n i vitar en monte, en lan **else plac**ente han vitarant por eleva **o**cidati<mark>ladia</mark>

FOOTNOTES

Associate Professor of Economics, University of the Philippines and Visiting Research Fellow, National Bureau of Economic Research, Inc.

(New York) during academic year 1975-76. Use of the TROLL econometric system has facilitated the computations made in this study. The author wishes to acknowledge also the helpful comments and suggestions of Douglas Adkins and Donald Keesing, and the research assistance of Lisa Horowitz.

Preliminary versions of this paper were presented at the Yale Economic for Court of Cour

LDCs at relatively higher levels of industrial development would presumably have larger shares of manufactured exports; cf. Chenery and Taylor (1968).

The distinction between direct (primary), indirect (secondary) and total effects as used in the trade literature, e.g., Meade (1951) and Scott (1957) stems from the recognition of interdependence in foreign trade. Most of the relevant studies, however, have been concerned with import demand or demand for a country's exports (assuming infinite elasticity of export supply) as reflected, for instance, in a recent survey by Magee (1975). While there has been some empirical work on export supply functions for developing countries, e.g., Stern (1965), Sheahan and Clark (1967), Bautista and Encarnacion (1972) and Krueger (1974), no systematic analysis of interrelated export commodities is provided in these studies.

³This would be implied, for example, by a constant elasticity of substitution between exports and domestic sale of each commodity. An analogous result for import demand distinguished by source of supply has been demonstrated by Armington (1969).

Rights Status in the English Robon Richard Robate States Andread Research Company (1994)

The same holds true for the other predetermined variables of the model as specified above for which the exogeneity assumption may not apply.

For instance, Primight plausibly be influenced by Processing and the stance of the second s

5See Appendix 1 for the derivation of equation (8) and succeeding equations presented in this sections with same in a solution of equation (8).

Desiccated coconut and copra meal (a by-product of foil extraction) are two other important coconut product exports but their contributions to Philippine export earnings have been relatively small (less than 4 and 2 per cent, respectively).

8 See Librero (1971).

⁹The structural relations in the two studies cited are formulated differently from those of the present study in that homogeneous export supply function for copra is assumed and Librero's domestic demand function has as arguments coconut oil prices expressed in U.S. dollars, real national income (in pesos) and a dummy variable to allow for a shift of the function in the 1961 de facto peso devaluation.

These empirical results may of course reflect differences in the measures of the price variables used more than the presence of "money illusion."

11 The reduced form coefficients from the OLS results correspond very closely to the coefficient values given in Table 3.

in this paper is that, in keeping with the exogeneity of the Y_A variable, domestic production of copra remains constant. With changing domestic price of copra, such assumption cannot be true over a long period of time. Now copra output is determined by the stock of fruit bearing coconut trees. Since it takes at least six years after planting for coconut trees to bear fruit, the induced changes in the endogenous variables (including the interaction effects) should be completed before six years for the simulation results on the total effects to be valid. That this condition is likely to be fulfilled is suggested by the empirical finding of only a two-year lag length for the price effects on export supply.

A yer sicens, cespecially).

"Net Diffrero (1971).

The structured to the present anxive it considers and export differently incomposed of the present anxive it constronds of axport supply finaction in our time and the analysis of an animal for the present of the analysis of an animal to descent off and any exposed in the calleng, real of the resultion in the arms of a truck readers to allow the allow the animal of the resultion in the arms of the acts of a devaluation.

10 rese empirical results very of course reflect disferences in the measures of the error overables and error than the presence of thought. Thusian. The sign of the course of the cours

iffile reduced form coefficients from the OLC posults turne from many classic to the poefficient address given in Table 3.

က်မှာစုအကြောင်း ရှိနှင့်သော သည်။ သည်ကူ၌ ကိုလူညှည့်မှာ မြောင်းပည်များမှာ မေးကို မေးသည်။

APPENDIX 1: Notes on the derivation of the effects of export price and exchange rate changes (cf. Section 3)

Taking total differentials in equations (1), (2) and (3) and setting dY_A , dP_C and dE equal to zero, we obtain

$$dX_{A}/X_{A} = n_{xA}d(R \cdot P_{xA}^{*})/R \cdot P_{xA}^{*} + n_{hA}dP_{hA}/P_{hA}$$

$$dX_{B}/X_{B} = n_{xB}d(R \cdot P_{xB}^{*})/R \cdot P_{xA}^{*} + n_{hB}dP_{hB}/P_{hB} + n_{yB}dY_{B}/Y_{B}$$

$$dH_{B}/H_{B} = e_{hB}dP_{hB}/P_{hB}$$
(A1)

where n_{xA} , n_{hA} , n_{xB} , n_{hB} , n_{yB} and e_{hB} are the elasticities defined in the text.

From equations (4) - (7), holding YA, PZ and MM constant,

$$\frac{dY_{A}/Y_{A}}{dY_{B}} = \frac{H_{A}/Y_{A}}{B} \cdot \frac{dH_{A}/H_{A}}{B} \cdot \frac{dH_{B}/Y_{B}}{B} \cdot \frac{dH_{B}/H_{B}}{B}$$

$$\frac{dY_{B}/Y_{B}}{dY_{B}} = \frac{dH_{A}/H_{A}}{A} \qquad \frac{dP_{hB}/P_{hB}}{dP_{hB}} = \frac{dP_{hA}/P_{hA}}{A}.$$
(A2)

Eliminating dH_A/H_A , dH_B/H_B , dY_B/Y_B and dP_{hB}/P_{hB} in (A1) and A2)

gives the following system of equations in matrix form:

$$\begin{bmatrix} 1 & 0 & -n_{hA} \\ n_{yB} X_A / H_A & 1 & -n_{hB} \\ \frac{X_A}{H_A} & \frac{Y_B}{H_B} & \frac{X_B}{H_B} & e_{hB} \end{bmatrix} \begin{bmatrix} dX_A / X_A \\ dX_B / X_B \\ dP_{hA} / P_{hA} \end{bmatrix} = \begin{bmatrix} n_{xA} d(R \cdot P_{xA}^*) / R \cdot P_{xA}^* \\ n_{xB} d(R \cdot P_{xB}^*) / R \cdot P_{xB}^* \\ 0 \end{bmatrix}$$
(A3)

nor for a report of a considerated religion are no merces are to place and the first profit

en lagen de la Reine Branch (1884) en 1886 de 1812 (1884).

Effects on XA and XB of a change in A's export price (in foreign currency):

Setting $d(R \cdot P_{xB}^*) = 0$ and $d(R \cdot P_{xA}^*) = RdP_{xA}^*$ in (A3), and using Cramer's rule, we have

$$\frac{dX_{A}/X_{A}}{dP_{xA}^{*}/P_{xA}^{*}} := \frac{n_{xA}}{k}, (e_{HB}i + n_{hB}), \quad \text{which resolves the entire } (A4)$$

$$\text{distance for } \frac{dX_{A}/X_{A}}{dP_{xA}^{*}/P_{xA}^{*}} := \frac{n_{xA}}{k}, (e_{HB}i + n_{hB}), \quad \text{which resolves the entire } (A4)$$

where K is the determinant of the coefficient matrix in (A3). The expression for K is given in equation (9a) in the text, which upon substitution in (A4) yields equation (8).

Solving for $\frac{dX_B/X_B}{dP_*^*/P_*^*}$ in (A3) by Cramer's rule gives equation (9) directly.

Effects on XA and XB of a change in B's export price (in foreign currency):

Set $d(R \cdot P_{XA}^*) = 0$ and $d(R \cdot P_{XB}^*) = RdP_{XB}^*$ in (A3). By applying Cramer's rule to solve for $\frac{dX_A/X_A}{dP_{XB}^*/P_{XB}^*}$ and $\frac{dX_B/X_B}{dP_{XB}^*/P_{XB}^*}$, equations (10) and (11) are obtained.

CSA way CSA) at year of the care the graph of her in the graph of the

Effects on X_A and X_B of a change in the exchange rate:

Setting $d(R \cdot P_{xA}^*) = P_{xA}^* dR$ and $d(R \cdot P_{xB}^*) = P_{xB}^* dR$ in (A3) and using Cramer's rule, we have $\frac{dX_A/X_A}{dR/R} = \frac{1}{K} \left[n_{xA}(e_{hB} + n_{hB}X_B/H_B) - n_{xB}n_{hA}X_B/H_B} \right] - n_{xB}n_{hA}X_B/H_B}$ $\frac{dX_B/X_B}{dR/R} = \frac{1}{K} \left[-n_{xA} \frac{X_A}{H_A} (e_{hB}n_{yB} + n_{hB}Y_B/H_B) + n_{xB}(e_{hB} + n_{hA} \frac{X_A}{H_A} \cdot \frac{Y_B}{H_B}) \right]$

from which, assuming homogeneous export supply functions, equations (12) and (13) in the text are obtained.

itarraguinas simuni bus paisto de propieto (2001) e le secolo (2005)

time and arimperget faithers in electronic contrate the first terms.

APPENDIX 2: Sources of data

Basic data used in constructing the time series for most of the variables appearing in the regression equations were obtained from the December 1974 issue of the Statistical Bulletin, a publication of the entral Bank of the Philippines. The personal consumption expenditures index (CE) was derived from the National Income Accounts of the National Economic and Development Authority. Baldwin's (1975, pp. 86-87) estimates of effective exchange rates for traditional exports (R) were extended to 201273 for the desired time series. Because Philippine recorded data on a edcopra exports were rendered unreliable by significant overshipment (actual exports exceed the amount indicated on the shipping papers) during years of substantial overvaluation of the domestic currency and occasional undershipment (notably in 1963 and 1964), partner country data on copra imports from the Philippines were used to represent QXA with adjustments for copra afloat (over year end), following Nyberg (1968, pp. 33-35). There are no significant discrepancies between recorded and actual coconut oil exapports (which are shipped not by chartered vessels as for copra but by conference lines), and hence Central Bank published export data were used for QXB. Data for the domestic consumption variable QHB were obtained residually, subtracting coconut oil exports from domestic output.

中的 calty med to the

. - nobrod

For 0.2

REFERENCES

- Almon, S. (1965), "The Distributed Lag Between Capital Expropriations and Expenditures", Econometrica 33, 178-196.
 - Armington, P.S. (1969), "A Theory of Demand Distinguished by Place of Production", IMF Staff Papers 16, 159-176.
 - Baldwin, R. E. (1975), Foreign Trade Regimes and Economic Development:

 The Philippines (National Bureau of Economic Research, New York).
 - Bautista, R. M. (forthcoming), "Effect of Major Currency Realignment on Philippine Merchandise Trade of The Review of Economics and Statistics.
 - Bautista, R. M. and J. Encarnacion (1972), "A Foreign Trade Submodel of the Le Philippine Economy", The Philippine Economic Journal 11, 231-248.
- Chenery, H.B. and L. Taylor (1968); "Development Patterns: Among Countries and Over Time", The Review of Economics and Statistics 50, 391-416.
- Cochrane, D. and G. Orcutt (1949), "Application of Least Squares Regressions to Relationships Containing Auto-correlated Errors Terms", Journal of the American Statistical Association 44, \$2-61.
- Cooper, R. N. (1971), "Currency Devaluation in Developing Countries", Essays
 - Krueger, A. O. (1974), Foreign Trade Regimes and Economic Developments Turkey (National Bureau of Economic Research, New York).

age Jergey), we was by a day, and the are to be a construction of the sett most

- Librero, A. R. (1971), "International Demand for Philippine Coconut Products

 An Aggregate Analysis", The Philippine Economic Journal 10, 1-22.
 - Little, I. M., T. Scitovsky and M. FG. Scott (1970), Industry and Trade in Some Developing Countires: A Comparative Study (Oxford University Press, London).
 - Magee, S. P. (1975), "Prices, Incomes and Foreign Trade", in: P. B. Kenen, ed., International Trade and Finance: Frontiers for Research (Cambridge University Press, New York).

- Meade, J. E. (1951), The Balance of Payments (Oxford University Press, London).
- Nyberg, A. J. (1968), The Philippine Coconut Industry, Doctoral Dissertation (Cornell University, Ithaca, New York).
- Scott, M. FG. (1957), "Interdependence and Foreign Trade", Oxford Economic Papers (New Series) 9, 88-106.
- Sheahan, J. and S. Clark (1967), "The Response of Colombian Exports to

 Variations in Effective Exchange Rates", Center for Development Economics

 Research Memorandum No. 11 (Williams College, Williamstown, Mass.).
- Stern, R. M. (1965), "Malayan Rubber Production, Inventory Holdings, and the Elasticity of Export Supply", Southern Economic Journal 31, 314-323.