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MODELS OF INPUT CHOICE UNDER '
TECHNOLOGICAL UNCERTAINTY

In this paper simple models are developed in order to
examine firm behavior when a random variable appears in the
firm's production funbtiqn. Specifically, our objective is
to sfudy the effect on input choice oflchanges in the entre-
preneub's‘attitude toward risk, of changes in’the subjective
probability distribution of the raﬁdom variable, and of changes

in product and input price.

Fifsf, the inéofporation of random variables in the
produétion function and the nature of the subjective proba-
bility beliefs‘are discussed. Theﬁ,a model whiéh employs
the assumption of expectgd,utility maximization is developed.
A variation of the chance constrained programming model of-
production is also presénted. Finally several theoretical

and empirical implications are derived from the analysis. f



1. Introduction

Two types of uncertainty which confront the producer have

been distinguished in the recent literature. The first is un-

certalnty 1mposed by the 1nab111ty to predict future product and

input prices (price uncertalnty) The second is uncertainty due

to the inability to predict output quantities given input levels
(technological uncertainty). 2 In wﬁat follows we are concerned
malnly w1th technologlcal uncertalnty, since ghls type of un-
certalnty has not been extensively analyzed in the 11terature
and~81nce it appears to be an important form of uncertainty in

agriculture.

Traditional economic theory assumes that the production
function is a single valued function which glves the maximum

quantity of the output for any given combination of inputs

/5/, /13/.

v e s —————— ... b

1For analys1s of product prlce uncertainty under perfect
competition see, for instance, Tisdell /32/, Penner /25/, and
McCall /19/. For the oligopolistic case see Hymans /14/ and
Mills /22/; for the monopolist see Dhrymes /8/. Factor price
uncertalnty has not been extensively studies,

2Three works comprise virtually all of the literature . ,
concerned with technologlcal uncertainty in the context of the
theory of the firm, those of Tintner /31/, Walters /35/, and
Moses /23/. In the mathematical programmlng literature, of
course, technological uncertainty is also incorporated into
programmlng models of risk.
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In agricultural production, however, actual output depends on
meteorological and other variables which cannot be controlled by
the decision maker. This means that a given combination of inputs
employed according to a given technology, will yield differenf
quantities of output depending on the'outcome'of some random
pheﬁomena. In suchva situation a single valued production function
does not exist, but rather each combination of inputs leads to a
probability'distributidn of outputs. Thus output is a random
variable and can be expressed as a function of the input variables
and certain random variables representing solar radiation, soil
moisture; etc., |

N . Q= f (X,8)
where X is a vector of inputs, and -8 is a vector of random
variables, and f denotes the production function. We will see
below that we need not be specific about the sources of production

uncertainty, but we must specify the way in which random variables

are entered in the production function.

Initially we assume that the random variables, B8 » are
parameters of the production function which assume different value;
in different production periods, having a joint probability density
function g ( B8 ) distributed independently of X. This approach
is suggested by experimental data on the response of grain yield

to nitrogen.-3 Such an assumption has also been used in the

SFuller /11/, fit separate production functions to the ferti-
lizer trials data for each of eleven years. Seasonal fertilizer.
production parameters were also estimated at the International
Rice Research Institute /15/.



mathematical programming literature concerned with incorporating

risk into programming models. "

If we kﬁow the joint density function of/ég and the
functional form of the production function, we can derive the
conditional density function of output, given the input levels.’
A knowledge of the conditional density function of cutput is
unnecessary, however, for finding the conditional mean and
conditionai variance of output. For it can be shown that the
expectation of a function of a random variable with respect to
the probability law of this function is equal to the expec?ation
of the function with respect to the probability law of the
random variable.® Hence we can write the conditional mean and

the variance of output as

(2) EQIX) =/ qn(Q|x)dQ
5w
= // f(X,p)g(s)dsg
.
(3) Var(QX) =/ (Q - E(Q|X)Ph(Q|x)dQ

.A//

-3

vf (£(X,8) - EC£(X,8)))2a(p)da

o)

uSee, for instance, van de Panne and Popp /36/, Miller
and Wagner /21/, and Sengupta /29/. This approach is more
general than the approach taken in econometric work which
commonly postulates an additive or multiplicative random term
in the production function. We allow the random terms to be
coefficients or exponents in the production relationship.

5See Parzen /24/, pp. 308-338.

6Again, see Parzen /24/, pp. 3u4L4-345,
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where h is thérconditicnal density function of output given
the input levels aﬁd B cannot assume negative values. Thus,
under our assumption of random production parameters, both the
mean and the variance of output become functions of thé input
levels. The mean and variance of output are not independent

of input levels, although the mean and variance of B are.

Similarly, the conditional mean and variance of profit

given input levels and input and output prices can be expresse .

as
w ECn| X,p,0) =/ v (X,p,c, B )g( 8 )dB
=/ pf(X,8)g(s )ds - c'X
= pE(Q{X) - ¢'X
(s) Var(n| X,p,e) = / _ (n (X,p,e,8) -~ E(n|X,p,e)) g(B)aB
§ =
= [ p2(E(x,8) - EC(£(X, 8% ag
(o]
L pZVar(Q|X)

where p is the price of the product and ¢ is a vector of
input prices. Again, the mean and variance of profit depend

on input levels although the mean and variance of g do not. 1

As we have seen, a characteristic of agricultural
production functions is that output in a given production
period depends on both the input levels in that time period
and on the outcome of certain random phenoména. This means,

of course, that profit, output, and marginal product are
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random variables, and that choice criteria used under certainty
cannot be applied to select the optimum level of output. The
decision maker faces the problem of choosing-an action which

maximizes his objective function under uncertainty.
v .

We assume that the deciéion maker has a complete and
consistent pfeference ordering over the set of possible actions.
Von Neumann and Morgenstern /34/ have shown that if preferences
overlsets of probabilistic outcomes (prospects) are complete
and consistent in the sense that they satisfy certain axioms,
the preference ordering can be represented by an,eipécted
utility function. This implies that the rational decision
maker will choose that prospect which maximizes expeéted.
utility. This expected utility equals the sum of the utilities
of each of the outcomes contained in the prospect weighted by
their probébilities. |

The expected utility appfbach assumes that the expecta-
tioné of decision makers concerning future outcomes can be
expressed as é probability disfribution."This appears'fo
restrict the applicability of the expected utility approach |
to cases where the actual probabilities are known by the
decision maker. However, Savage /28/ has shown that these
probability weights may be interpreted either as objective
probabilitigs derived from limiting values of relative fre-

quencies or as subjective probabilities derived from personal
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beliefs concerning the probabilities of the outcomes. The
personal beliefs are obtained from partial knowledge’of'the‘
probabilities based on past éiperience or mere hunches.

Savage demonstrates that if the ﬁreference orderihg satis-
fies certain_consistency‘conditibns then it is possible to
speéify a utility function, and a probability distribution
which satisfies the axioms_of\pfobability,'so that an expected

utility function describes the preference ordering.

Clearly probabilities assigned by the decision maker
need not conform to the axioms of probability. Nevertheless,
we assume that the probabilities assigned satisfy these
axioms so that the theorems derived.in the mathematiéal theory
of probability can be utilized. This does not imply, however,
that the probabilities must be interpreted as relative fre- 
quencies. They may alternately be regarded as subjective
probabilities derived from preferences satisfying the Savage

conditions.

Knight /17/ has introduced a distinction between risk
and uncertainty. A situation is characterized by risk if the
probabilities of the outcomes are known. If fhe probabilities
are not known the situation is described as uncertain. Such
a distinction disappears, however, when a subjectivist inter-

pretation of probability is allowed.7 If individuals make

7For‘critical discussions of Knight's view see Arrow /1/,
and Shubik /30/. )

"“‘v
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decisions in the face of uncertainty by applying subjecfive,
beliefs about the-probabilities of the outcomes, their behavior
under uncertainty‘will not be qualitatively different from that
under risk. Given his prefefénce_fUnction and the cost of ac-
quiring additionél information about the probability distri-
bution, the deciéion maker can chcose the optimal amount of
uncertainty in a manner consonant with modern statistical
decision theory.8 Thus decision theory, by utilizing a pre-
ference function, enables the decision maker to transform
Knightian uncertainty into a situation of risk. In'wﬁat
follows we conform to the convention which uses the term
uncertéinty to refer to any situétion where the outcome cannot

be predicted with certainty.

We will not be concerned with expectation formation
in what'foliows. I assume that the expectations concerning
possible outcomes are given, and search and learning behavior
is not considered. Obviously, economic considerations are
involved ?n the collection of information and,Aas suggested

above, decision theory prcvides a formal framework for analy-

zing this problem.

8See'Fishburn /10/, or other decision theory text.
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2. Expected Utility Approach

It,has'been shown by Penner /25/, MeCall /19/, and
Fellner /9/, that when,the\source_of risk is due to price
uncertainty the risk averter; under perfect competition,
will always produce lesé on average than will the éxpected
profit maximizer. We will show that under technical uncer-
tainty risk aversion does not imply a lower level of outpuf.-
Additional assumptions conéerning the nature of the disper-
sion of.dutput‘are necessary to guaranfee the negative

effect of unceftainty on output.

We assume the farmer chooses input levels in ordef to
maximize expééted utility of profit in the next period. It
is assumed that he has single valued expectations.concerning
product priée (independent of the production decisions), and

that the price of the input is known at the time the input
decisions are made. 'The firm has negligible influence on
price and can sell any guantity at the.market,pfice{ The

production function is specified as in equation (1) with a
. . : hd

1

single input and a single random parameter, but the analysisl
can easily be extended to many variables by intérpreting X

‘as a vector of inputs and B as a vector of random parameters.
In this case expected utility may be written.

(6) EU

fu(pf(x,m - eX)g(8)dB

¢}
EU(pf(X) - cX).
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We assume that U is monotone increasing, twice differentiable,
and strictly concave, U"<O. That is, there is aversion to

risk everywhere.

The first order condition for expected utility maximi-
zation 1is

(7) d—g%: E[U'o(Pf'(X) -C)] = 0.

The second order conditicn is

2 |
(8) 9B - p[ut.pfm) + UML(RENX) - 2] <o,

clearly satisfied if U and f are strictly concave.
The first order condition may alternatively be written as?
(9) EU'.E(pf'(X) - ¢) + Cov(U',pf'(X) - ¢) = O.
Dividing by EU'

(10) PE(£'(X)) - ¢ + Cov(U', pf'(X) - c) _ 0
EU' -

At optimum, expected marginal value product plus a term
due to risk is equated to factor price. This term may be positive.
negative or zero even if there is aversion to risk. If the
covariance between marginal utility and marginal profit is zero,
then the term due to risk is zero and the risk averter simply
equates expected marginal value product to factor pricé. This
reproduces the case of an expected profit maximizer. Thus,

the risk averter does not necessarily apply a lower level of the

gGiven two random variables X and Y , E(XY) = E(X)E(Y)
+ Cov(X,Y). See Parzen /24/, page 356.



- 11 -

variable input than does the expected profit maximizer. Only
if the covariance between marginal utility and marginal profit
is negative does risk aversion imply a lower level of input
and thus a lower level of outbut on average than in the case

of neutral risk preference.

The covariance between U' and =' is a measure of the
change in the dispersion of profit as the input level changes.

To see this, write the variance of profit as

(11) . Var(w) = E(n2) + E2(w).
Then
(12) - AVar(n) _ op(piaty - 2B(n)E(r")

dX

2Cov(m,m').

Hence, for U"<0 negative Cov(U',n') implies that Cov(w,n')

is positive, which in turn implies that dVar(n)/dX is positive.
Thus, the term due to risk is negative if there is pisk aversion
and if an increase in the level of the input causes an increase |,

in the dispersion of profit.

If marginal utility is high (relative to its mean) when-
marginal profit is high (relative to its mean), then the cova-
riarice will be positive. Conversely, if low values of marginal
utility are associated with high values of marginal profit,

then the covariance will be negative. This relationship can be
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illustrated graphically. Figure 1 shows profit curves for two
values of g . In this case the covariance is negative because

U' decreases when ' increases (the utility function is
concave, remember). In Figure 2 the covariance is positive

since U' assumes a large value when ©' assumes a large value.
It is obvious that in Figure 1 the dispersion of profit about

the mean increases as the input level increases, while in'Figure 2

the dispersion diminishes.

‘The first order conditions can also be interpreted in
terms of 3. pigk premium. Pratt /26/ defines the risk premium,
f(z), as an amount which would make the decision maker indif-
ferent between receiving the random amount 2z and the certain
amount E(z) - %(z). For the firm facing uncertainty, the random

prospect is profit, so we have
(13) EU(y) = U(Er - & (1)).

Differentiating with respect to X

1

(14) dEU _ - C i), .
% ° U'(Ewr - & (n)).(ET' - ax ) = 0.

Dividing by U'(Er - # (n)) which is positive

(15) dEU d (1)

En' -~

% a0
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Comparing with the first order condition we get

(16) At (1) _ Cov(y'yn
dX .3 v EﬁT)—."l '

If Cov(U)n') 1is negative, an increase in ‘the use of the factor

causes an increase in the visk premium. Thus Cov(U')W')/EU'
¢an be interpreted as an additional marginal cost due to the
attitude toward risk of the firm. At optimum an increase in
the use)of fhe factor can Cause expected profit to inoreasge,
but expected utility falls because of the increase in the risk

premium demanded by thé firm.

We are interested in determining the effect on thoice
of input leVel of (a), a change in aversion to risk, and (b) a

change in the uncertainty faced by a firm,

Using the Pratt/Arrow /26//2/ measure of absolute risk
aversion, r(w) = U"(n)/U'(n), it is possible to show that the

optimal input level decreases as the risk aversion index deoreases

pro¥®ided ¢f course, that Cov(U',r') is negative,lo- ' '

Wrpis demonstration essentially follows Baron /3; p. 91/,
who proved the statement for the case of demand uncertainty.j‘

N .
.- - ! . ’



S

Consider two utlllty functions U1 and U2, with ry (n)
>r (r) for alln 1nd1cat1ng that U1 is everywhere more risk

adverse than Uz. The maximization of expected utility is equi- *

valent to maximizing

1 v
(17) mEU(Tﬁ)

where 7 =~ is a constant defined below. Differentiating EU, and

EU, and subtracting gives

| | y ~
18 : t 1]
(18) digl ) diuz .- /}, r(w) : _?2‘(")) 2(8yas
| X J W T, ) v
o [N !
et e
a//'T&U Ty T e,y 8(P)ad
8, |
where B _is defined such that m,'o= m (X »8, ) = 0. Now for U

concave andn>ﬂo Pratt /26/ shows that Ul (n) Uy " (m

’ < 2 , for
bl
U, "G ) RN ERN

'(ﬂ) '(ﬂ)
m<w ? .
[o]

'cn )’ '(ro>

Thus the term in brackets in the

first integral is positive while in the second integral the
bracketed term is negative. Let X0 be the optimal input for Uys
o

dEUZ/dX0 = 0, and evaluate the integral at X Assuming positive,f

0
Cov(Ui,n') (which meaﬁs that n' increases as B increases), the
first integral is negative since w'<0 for B<B and the term
in brackets is positive. Using the same assumption about
Cov(U',n'), the second integral is negative because 7'>0 for
B>8 énd the bracketed term is negative, But, since

dEUz/dX0 = 0, dEU /dx <0. By the second order condition a

decrease in the input level is required for the optimum conditions

to be satisfied. Thus . a global increase 1in  risk
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aversion implies an increase in the absolute value of Cov
(U', =')/EU' and by additional implication an increase in the

risk premium.

We now consider the effect on input level of a change in
the parameters of the distribution of the fandom variable.
Specifically, we consider the effect of a change in the variance,
while the meah of the distribution remains unchanged. In general,

the sign of the effect is difficult to determine.

Using Taylor's formula expand expected utility about the

" mean value of profit.

(19 EUG) = UEm + 3 /[ UMED C (n- En’e(s)as
(e}
+ higher ‘order terms
Differentiating with respect to X and integrating gives the first

order condition

(20) QEUCH) = yr(En)En' + 3U''T(Em).Var(x) + Tyt r (g, 2Yepin)

+ higher order terms = 0.

Assume that the higher order moments of the distribution are of
smaller order than Var(w). By allowing a small increase in Var
(n) we can examine the change in the first order condition in

order to determine the direction of change in X from X, for the

necessary condition to be satisfied

(21) 'Aéggﬁll = Jurren) avare) v Jur v 22D
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since U', U'', and U'L' are constants. Ex' is also a constant
since an unchanged Er implies an unéhanged En' evaluated at
XO . The sign.of U'''(Er) is unknown without further behavioral

' assumptions. If we assume with Pratt /26/ and Arrow /2/ that the

measure of risk aversion (n) = —-U''(5)/U'(1) 3s & decreasines _

(22) de(n) _ d(-U''/U)
dn - dn
or
(23) yrutt gt
ut? ' \
For this expression to be negative U''' must be positive. If

we assume that the random variable is a parameter in the production
function, in general A(dVar(n)/dX) Will‘be non-negative. These
assumptions do not guarantee the sign of (21), however. The

second term.is negative while the first term is positive and may
offset the second. If we assume that U is a quadratic function,
Ut is ieré,and A(dEU(ﬂ)/dXO) is negatiQe. According to the
second order céndition a reduction in the level of'input is needed

to satisfy the necessary condition. Thus in this case an inCrgasei

in the variance of profit results in a decreased level of input.
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)2 2

| . _ °EU 2“EU -
(24) d(aBU/QX) —-T dX + ———_—QXBC de = 0.
- Thus , . .
“ax ey £ 3%0 |
(25) ax . _ 9k -3 .
: dc 3Xse F 3X2

»BQEU/8X2 is negative by the second order condition, so dX/dc will

have the same sign as gELVaXac. azEU/aXac is

2o , 2
(26) %0 R o . a2
—3%5e - B U" AL - gt U e

am
-E(U" Xjr—— + UY) ,
\

-EU' - YE(U')'E vj““- - XCov ! U“ 3X-? .

The first term is negative, the second is positive, the third
term is indeterminate in sign. If, as above, we assume that gy
is positive, then Cév(U' am/8X) is positive. In spite of this
assumption the sign of the whole expression cannot be determlnéd
in general since the second term may be larger in magnitude than

the sum of the fifst»and last terms.

This ambiguous result is explained when we recognize that
an increase in ¢ causes the optimal level of use of X to decrease,
bu-t‘th-at a reduction in level of I diminishes the dispersion of 1’
‘profit. This, in turn, may'increase4the 1eye1 of use of X. This
is clear if we write by analogy with the Slutsky equation of con-

sumer behavior theory

\ F

\

27 ‘ dX

/

fax! | \ 3 (Cov/EU")

\3 (rlsk \BZCov :fconst) '\ 3c ?’
\const/ ) ;!
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The total effectrbﬁ&input level of a chénge in factor pripe;

is éomposed of the sumvéf two effects which may be interpreted
as a "substitution effect" and a "pisk effect". Thé first

term in equation (27) representé the "substitution effect" and
indicates the change in input level which would occur if‘the
decision'maker wére an expected profit maximizer or if risk did
not vary as input level varied. The second term represents’thé
"pisk effect" and is the rate of change in input. level brought
about by the change in the rlsk term as ¢ varies. The
"substitution effect" is.always negative. The "risk effect"'
may be positive, Zefo,'or negative since we found that an
increase in the varidnce of profit’m?y cause input level to
increase, remaih fhe same, oOr fo decrease.A,Note, howevgr,

that the "substitution effect" in the case of uncertainty does
not refer to the rate of change in a déciéion variable as
factor priéé changes where ﬁtility remains constant, but rather

refers to the same rate of change while risk remains unaltered.

The result and the interpretation for a change in p

are similar to those for a change in ¢ . Again, differentiate

the necessary condition totally using the implicit function

rule

(28) dX _ 22EU 32EU
dp 9X3p

%

k3

1
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The denominator iﬁ~équaticn (28) is'negative by the second

order condition, so the sign of dX/dp is the same as the signf 

of the numerator. The humerator is

(29) 32EU

By YT
- [ ] . 1" — ——

’ 32q / B 3
Ev U ) €57) + EK‘U"'Eﬁ ax)

N, 327 \ 32q
{5 ' ——
EU E(‘X“a ep) + Cov ({U > 3X5p

@
=
@
=3

p X

)

L:
<
>
.

+ BU".E«2£-91)+ Cov (U",

The sign of this expression cannot be determined without further

speéification.. As in the previous case a change in p leads to
a change in X. But a change in X causes a change in the dis-
persion of profit which leads to a change in X of indeterminate

sign.
3. Quadratic Utility Function

For illustration of the above rééults assume the utility
function of farmers is quadratic in the value of profit and that

the farmer attempté to maximize expécted utility.‘11

(30) . U(r) = n - an? a>0.

In order to assure a positive marginal utility of profit we assume

1
2a

- that pfofif'satisfies the condition 7 < z= . The stipulation that

11A quadratic utility fuﬁction~is often postulated in the

theoretical literature concerning behavior under uncertainty.

i
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a be positive implies that the decision maker displays an
aversion to risk. The use of a quadratic utility function
may be rationalized as an incomplete Taylor's series expansion
of a morevgeneral utility fﬁnction. Unfortupately a quadratic
function implies that risk aversion, in the Pratt-Arrow sense,

increases as profit increases.

We suﬁﬁose that the ﬁrice and production specification

are as given in the previous section.

The expected value of the utility function can be written

in terms of the moments of probability distritutien of profit.

Jx,) - a (n(x,8))3z(8)as

[ ]
2
E(n) - aE(w )

(31) EU

E(r) - a(Var(n) + E2(m)).

The first order condition for a maximum is

(32) | dEU _dEw @Var(T) sudEw
&® "X CeETHx P EF (O

_ dEw dVar(w) _
A(l 2aE1r) '-——dx - a "'—a-x—-—-— = 0
‘ .
' _ _ _ap” . avar(f(x)) _

Such ajﬁunction has been employed in the analysis of portfolio
select¥on by Tobin /33/ and Markowitz /20/, in the study of a
multlproduc? monopolist by Dhrymes /8/, and in consideration of
the precautionary demand for saving by Leland /8/. ~
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Or, in order to maintain symmetry with the previous derivation

of the first order condition, we may write

. ' _ .
(33) U perren - o+ SMWULIY L

2aCov(n,m')
Ef'(X) - - 2 =0
> © 1-2aEn

20ov(£(X),£' (X))
1-2aEx

PEf'(X) - ¢ - 22P = 0.

1-2aEr  is positive by our assumption concerning the range of
7, so the term due to risk is negative on the condition that

dVar(£(X))/dX is positive.

The second order condition is

2 2 % .
. (34) gXEU = (1-2aEt) gXEn _ 5 d§t>_ a d(dVagén)/dX) 0.

Compliance with this condition is assured by our assumption
concerning the range of n, the sign of a, the concavity of

f(X) and the method of entering B in f(X,8).

Differentiating equation (32) gives us the compara-
tive static results. An increase in risk aversion implies an

increase in the value of a. Using the implicit function rule
2 2

' dX _ _ 3°EU/3 ;U.
(35) da - T Xda/gX
- But the second order condition implies that 32EU/0%? is

negative, so we need only determine the sign of the numerator.

. 2
(36) 3 EU _ 2 dVar(f(X))
3%3a - " 2En(pEf'(X) - ¢) - p % <0.
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Hence, an increase in risk aversion decreases the optimal level

of use of the production factor.

We also want to know the response of equilibrium
input to an increase in technological uncertainty, measured by

the variance of output. The sign of this response is identical
2

to the sign of 3°EU/3X3Var(f(X)).
2 _
9 "EU - 2 d(dvar(£(X))/dXx)
(37) aXavVar(f(x)y ~ ~ @P dvar(£(X)) <0.

if the derivative of the "marginal variance" is positive. This
will be the case if the random variable is a production function
parameter. Thus, an increase in uncertainty produces a decrease

in the equilibrium level of input.

We can also attempt to determine the response of
optimum output to change in ¢ and p. As we expect from the
results in the general case, the signs of the responses cannot
be unambiguously determined. To determine the sign of dX/dc
we need to determine the sign of

32EU

>
m = (2aEr - 1) + 2aX(pEf'(X)-c) : 0.

(38)
Without further specification the response is not determinate.

Similarly, the sign of dX/dp is the same as the sign

of
3’EU
(39) 3%9p = (1 - 2aEm)(E(£'(X)) - (2aB(£(X))(PE(f' (X)) - &)
- 2ap dVaréi(X)) ; 0.

Again, the result is ambiguous in the absence of further speci-

fication.
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4. Price and Technological Uncertainty

In this section we allow both product price and output
to be rahdom variables. The input price is assumed to be known
with certainty. The farm firm is assumed to act so as to

maximize expected utility.

The first order condition is

dEU
dX

E(U' (pf'(X) - ¢)) =0

EU'* (E(pE'(X)) - ¢) + Cov(U',pf'(X)) = 0

= EU'"(E(pP) Ef'(X) + Cov(p,f' (X)) - c) + Cov(U',pf'(X))=0.

Dividing by EU'
- dEU

EU - E(p)'EF'(X) + Cov(p,£'(X)) - c + SOUWULRETCO) . o
E(p)'Ef;(X) + Cov(p,f'(X)) is simply expected marginal value
product. Thus we have again that expected marginal value éro—
duct plus a term due to risk is equated to factor price. This,
term may be positive, negative, or zero. In this case a negative
Cov(U',f' (X)) - does not guarantee a negative risk term.

An interesting question.is what additional assumptions %

'

are sufficient to guarantee the negativity of Cov(U,pf'(X)). A
positive correlatipn between p and f'(X) will suffice, but this
assumption is not very plausible since we expect output and
product price to be negatively correlated. In general, the

result is indeterminate.




Constant Risk Term

rs have utilized a constant risk deduct'io'n

Some write

in order to introduce uncertainty (and risk aversion) into
1s of’production under certainty /7/. Our analysis suggests

ce 1s inappropriate,

mode
that this comnon practi except in certain
isk term implies

special cases. The assumption of a constant ©

that Cov(U',n")/EU' is consta

nt for all values of X. That is,

Differentiating

the derivative with respect to X vanishes.

gives

3 (Cov(U' ,n')/EU') _ 3COV(U',m')/3X Cov (Ut ,n') T3EU"/3X .
3 = 5tk i 6 DY 0.

Rearranging we obtain

acov(U',m')/3X _ 3EU'/3X
Cov(U',m') EU' '

Thus, if 3Cov/3X and 3EU'/?3K both equal zero, or if the relative

_ increases in the dispersion of profit and expected marginal

utilit ‘
y are equal, then the risk term remains constant

Note i
that the risk term is a marginal c
than an average . e e
ge or total concept. Also note that subt i
constant risk allow i ' e
ance gives no information concerning the
nitude of i s
) the approprlate allowance. In our model the all
owance
clear i .
: ly depends on the variance and expected value of profit and

o . . .
n the risk aversion contained in the utility function




6. Baumol Criterion

An alternative to the measurement of risk by the "risk
- premium" demanded is to measure risk in terms of the chance of
"disaster". Thus the risk contained in a particular random pros-

pect might be represented by

P(z<z )
where P 1is probability and z is a minimal acceptable level of

the random variable.

Several economists have argued that outcomes below some
disaster‘level are of particular concern to the firm, and they
suggest that the chance of such outcomes should enter explicitly
into the firm's decision criterion. Roy /27/ afgues that the firm
will seek to minimize the probability of income falling below the
stipulated disaster level. Katoaka /16/ suggests that the decision
maker choose a probability level and maximize the lower allowable
limit of income subject to the constraint that the probability of
income falling below the lower limit is less than the preassigned
probability. Thus Roy advocates minimizing P(z<z,) for a given
Zge Katqaka, on the other hand, assumes P(z<z,) is given and '

recommends the maximization of z,.

Both of the above criteria are concerned with the minimi-
zation of risk. A more pausible criterion may be the maximization
of expected income subject to a chance constraint requiring income

to be greater than some lower bound with a stipulated probability.

Eeon=y 1 78f/
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The discovery of the optimal solution then becomes a chance cons-

trained programming problem /6/.

In this section we will formulaté a model of production
which is a variation of the chance constrained programming model.
We cannot use é chance constrained programming approach because
the constraint

P(m<m,) = H(mg)
where H(r) ié'the cumulative distribution function of profit,
cannot be shown to be convex in X, unless we unncessarily restrict
the form of H(n). Nor can we show that the Chebyshev upper bound
on the probability

Var(n)

P(n<w,) < 3
(E(") "170)

is a convex function of X. However, Baumol /4/ has suggested

a closely related criterion which requires the maximization of
expected profit subject to a constraint én E(v) - ko(w), where
o(n) denotes the standard deviation of profit. This amounts to

a constraint on the square root of the probability (réther than
the probability) that income falls below some minimum level. 1
If d%o(n)/ax?® is non-negative, then E(w) - ko(w) is a convex

.

function of X.
Adopting the Baumol criterion the problem can be written

(40) max E(m)
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subject to

(31)  E(®) - ko(n) 2 74
X 2 0.

The problem is to maximize a concave funcgtion subject to concave

inequality constraints. Form the Lagrangian function

(42)  L(X,A) = En - A(ne- E(n) + ko(m)).

: . . . e . . 12
Necessary and sufficient conditions for a constrained maximum are

- / '
(43) 3L _ B3Em 3Em -0 (m)i<
5% - 3% '.*(f 5% T K 3% T)' 0
(44) sy - E(a) + ko(n) < 0
(45) 3L,
. *é—)-(-.x - 0
(46) 3L -
S32eA = 0
(47) Az 0.

The constraint (44) holds as an equality since we assume
it is binding if it is imposed. It follows that A is positive.
The "marginal risk" term ( - 3En/3X + kdo(w)/3X) must also be
positive for the firm to be on its risk-expected value production
possibility curve. Thaf is, since an increaSe in X increases i
the expected value of profit, at opfimum an increase in X must
also lead to an increase in risk. If ‘this is not the case, the

expected profit-risk combination will be dominated by one with a

higher expected profit and a lower risk.

125¢e Hadley /12/, Chapter 6.
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Condition (43) means that if expected marginal profit
is less than marginal risk timés the impufed cost of risk thén‘
- zero production is optimal. If positive prodﬁction is optimal;
the firm will equate expectéd'mérginal value product minus mar-
ginal riék_timés its imputed cost to factor price. This gives a

result similar to that of the expected utility approach.

The comparative statié results are obtained by totaily
differentiating the constraint (44). An increase in risk aversion
is indicated by eithér an increase in #o_br'an increase in k.

The latter follows bécéuse an increase in k implies a decrease
in the probability of profit falling below n,. Differentiating

totally with respect_tb Tos We get

3Em | ac(n)) dx _
(48) (-‘ax + k 3% a;o- - 1.

Since the expression in brackets is positive, dX/dm, must be
negative. o
Differentiating totally with respect to k, we find

: f 3En do(w)\ dX _
(‘49) »Gax +k 3% )a-]-(--—d

¥
so dX/dk is negative. Hence, an increase in risk aversion leads !

to a decrease in input level and thus a lower level of output on

average.
The effeect of an increase in uncertainty on optimal
input is given by differentiating'the constraint with respect to

6 . We have




which implies. that dX/de - is negative. An increase in the uncar-

tainty faced by the firm, the mean profit level remaining unChahged,

- 29

dalrm) dXx

ax do - "k

implies a decrease in optimal input and in expected output.:

We are also interested in finding the change in input

4evel as product and input prices ghangé. Again; total differen-

tiation gives

- 9Em
(51) -tk
‘and _
9Ew
‘(52) (— X + k

Y

This yields dX/dp>0

increases the level

30(m) VAX . pe(x)

33X Jdp
9o (m) "dX -
X ) dc - X

and dX/dc<0. An increase in product price

of use of the input, while an increase in the

factor price decreases the optimal input level. Thus, in this

case we get determinate results under uncertainty which conform

to the results derived in the case of certainty.

DH/abg
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