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SUMMARY

This paper deals with two single-equation estimators
in a set of simultaneous linear stochastic equations--
namely, two-stage least squares (2SLS) and ordinary least

squares (OLS).

Undervthe assumption that all predetenmined variables
in the model are exogénous,'it is shown that for the general
case with an arbitrary number of inpluded éndogenous varia-
bles, even moments of the 2SLS estimator>are finite if the
order is less than K2-61+1.v N is the sample size,’~Gl+1
the number of included endogenous variébles, K; and K,
respectively the number of included and excluded exogenous

variables in the equation to be estimated.

The starting point for the proof of these results -is
the characterization of the OLS and 2SLS estimators as
functions of non-central Wishart matrices. It is shown thét
the 2SLS estimator is given by W;%WZI where W is a non-

w11 Wigh
central Wishart matrix partitioned as W = kﬁZl Wy L Wiq
being 1x1. The‘ OLS estimator is similarly equal’fo

'1A where A 1is another non-central Wishart matrix which

A22 21

has the same covariance and means sigma matrices as W but

vdifferent degrees of freedom.



l The expressions for these two estimators are reduced
to éanonical'form to set tﬁe stage fbr fhe proof of the
main result. As a by-product of this reduction, the exact
functions of the-originai parameters of the model which
affect the probability distributions of fhe OLS and 2SLS

estimators are determined.
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1. INTRODUCTION.

- Basmann (4,5) has conjectured that the moments of the
two-stage least squares (2SLS) estimator of an equation in a
simultaneous system 6f'linear stochastic equations exist if
the order is less than K,-G,;+1 where G,;+1 and K, are
respectively the numbers of endogeneous variables included
and"predetermined vaﬁiablee excluded from the equation beingA
estimated. Under the,assumption,that'all predetermined varia-
bles afe exogenous, Richardson (7) and Sawa (8) have confirmed
this conjecture for the case of two included endogeneous varia-
bles with both the number of excluded exogenous variables

and the number of equations in the model being arbitrary.
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‘Under the aséumption that éll predetermined variables
) in the modei are exogenous, we prové in thié paper that for
the general case with aﬁ arbitfarg number'of included endo-
genous variables, éven moments of the 2SLS estimator are
finite if the order is less than K,~-6,+1 and infinite
otherwise, and that even moments of the ordinary leasf squares
(OLS) estimator exist if the order is less than N-K, -G, +1,

where N is the number of observations and K, the number

of included exogenous variables.

The sfarting point for the proof of these results is
the characterization of the OLS and 2SLS estimators as
functions of non-central Wishart matrices. This is done in
the next secfion. Section 3 deal§ with thé reduction of the
estimators to canonical fofm and in sectibn 4, the prbof of

the main results is given.

In closing this section, we would like to indicate
our notation for the Wishart and multivariate normal distri-

butions.

We write x . Nﬁ(u,z) to indicate that x is a
pxl normal random vector with mean ¢ and covariance matrix

I.
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If W=2'2) where Z is a nip randbm matrix whose
fowé are mthally independenf normal random vectors with a
cémmon'covariénce'matrix L,. then W has a Wishart distri-
bution of order p, with n degrées of freedom, covariance
matrix i and means sigma matrix (EZ)'(EZ). We denote this
by W - Wp[n,t;(EZ)'(EZ{E. The distribution pf w‘ is said to
be central if (EZ)'(EZ) = Q.

2. THE ESTIMATORS AS FUNCTIONS. OF NON-CENTRAL WISHART MATRICES.

In a simultaneous system of G linear stochastic
equation relating G endogenous and K predetermined varia-

bles, the sipgle equation to be estimated may be written as:
y=Y8+Zy+u (2.1)

where (y Y,) is the ‘Nx(Gi+1) matrix of included endogenous
variables, Z1 the le(l matrix of included predetermined
variables, u the Nx1 vector of disturbance.terms and 8

and y are vectors of unknown coefficients.

The reduced form equations for the G,+1 endogenous

variables included in (2.1) are

Y Zn' + VvV ¢2.2)

ZyM, "+ 2,0, 4V (2.3)



_where Y f (yY) , Z= (Zl 22)1’ Z, . is the NxK2 matrix
of excluded predategmined variables, V is the Nx(G,+1)
matrix of reduced form disturbance terms and I is the
(Gl+1)xK matrix of reduced form coefficients partifioned'as

(Hl ﬂz)'where II1 is (G1+1)XK1 and I, is (Gl+1)xK2.

In this paper, we make the following assumptions

about the model:

(1) All predetermined variables are exogenous.

(2) Theléquation to be estimated.is identified by zero-
restrictions on the structural coefficients in the
model.

(3) Thé sample size is greater than or equal to the
total number of variables in the system. (N 2 G+K).

(W) 2 is a matrix of constants and is of full rank.

(5) The rows of V are mutually independent and iden-
tically distributed as normal random vectors with
zero mean vector and positive definite covariance

- matrix L.

It is well known that assumption (2) is equivalent to

the assumption that the rank of I is G, , which in turn

2 1

implies that K, 2 G,. Also, assumption (5) implies that in

(2.1) , Eu = o.
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Under our set-up, it can be shown that the expression
for Theil's.k-class'estimators of B (for ekample, as given

in Johnstbn (6), p. 260) simplifies to
(Y, 'p, Y7} v ey (2.4)
where ; : .
P = (I - z;(zl"zn"z,':\x - k[x - z‘(z'z’)"‘z]_ (2.5)

It is well known that the OLS and 2SLS estimates of 8

correspond to k=0 and k=1, respectively, and hence it
follows that the OLS and 2SLS estimators of g are given

by A;;A21 and w;;w21 respectively?.ﬁhere

fas, A
A= ypgy ={ 1P 12L (2.6)
- \A21 Apy )/
and ; ' .
fwy, Wy, '
W= Y'P,Y = | . (2.7)
\ Wz, LYY :

In (2.6) and (2.7), A,, and W,, are both G,xG, submatri-

ces.?3

3In terms of A and W, the limited - information
maximum likelihood estimator of 8 is the right-side charac-
teristic vector of (A-W)-lW (normalized such that its first
component is equal to unity) corresponding to the smallest
root of lw - A(A-W)| = 0.



Since. Z is of full rank (by assumption (u)), there
exlsts a KxK non-singular upper trlangular matrix ¢ such

that ¢'Z'Z¢ = I. Partition ¢ as follows:

0y, %;,) Kk
. { 11 P12\ ™ (2.8)
\o 4y, /K
kl k2
and let B _
X = Z¢ : (2.9)
= (X, X2) e , | (2.11)

Note that X'X =TI and ¢,, and ¢,, are both upper tri-

angular non-singular matrices.
It can be verified that

XX' = Z2(Z'Z)71Z' = X X' + X,X,' (2.12)
and _

XX, ' = 2(2, 20"z, (2.13)
so that the matrices P; and P; as given by (2.5) may also

be expressed as

v
-
'

=1 -XX"
(2.14)
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Furthermore, by (2.3), EY = Z;n,' + Z,n,' and thus, it
follows from (2.10) and (2.11) that

(EY) 'Py(EY) = (EY)'P,(EY)

1 ] ! l . .
n,z, szznz d (2.15)

Now, by (2.2) and assumption (5), the rows of Y are
mutually independent normal random vectors with common covar-
iance matrix I and by (2.14), P, and P; are symmetric
and idempotent with raﬁks';N;Kl and K, respectively. Hence,

the following proposition holds:

Proposition 2.1. The OLS and 2SLS estimates of

8 are respectively given by A;lA,, and W;lW,,, where

A~y (N"Kl L3 M),

G, +1
W=w  (K,z; M),
Gl*li
and ‘
M =1,2,'P,Z,1,"..

The above proposition indicatésvthat the kOLS and
2SLS estimators have the same functional form in terms of
non-central Wishart,matrices. Furthermore the two Wishart
matriceé involved have the same parameters except for the deg-
rees of freedom. Since our approach in this paper is to look

at these two éstimators as the above indicated functions of



Wishart matrices in order to achieve a reduction to canonical
form and analyze the existence of}mbménts, we can then derivev
our results for the 2SLS estimator and from these infer the |
results for the OLS estimator‘by simﬁly'making the proper.
changes‘iﬁ.the degrees of freedom.of the Wishart matrix in-

volved. ' - ' , ‘

3. REDUCTION TO CANONICAL FORM.

From now on, let § be the éSLS estimator of
8. The usual pbocedure applied to reach a reduction to cano-
nical form is by transforming the non-central Wishart<matrix
W so as to diagonalize M and transform I to the identity
matrix. For example, see Anderson and Girshick (3). Unfor-
tunately, due to the nature of # as a function of W, 8

becomes a complicated and intractable function of the result-

ing Wishart matrix if the above procedure were to be applied.

In this seétion, we‘shall maké use of transformations
of W and'to R, say, such that § is a linear function of
the components of R;;RZI. The trade-off is that either the
means sigma,matrii‘of R . is not diagonal or its covariance
matrix is not the identity. ‘To arrive at such transformations,
we make use of a sﬁeqial property of the meansksigma matrix

M which we indicate in the following lemma.



Lemma 3.1. The first row of M is a linear combina-

tion of its remaining rows with the components of 8 as

weights.

 Proof: Since Xiz1 =0 and Eu =0, it follows
from (2.1).that
E(X]y) = E(X3Y)) @ (3.1)

which implies that the first column of E(X}Y) is a linear
combination of the remaining columns, with the componenté of

B as weights. Hence, the lemma holds, since M = E(XJY) 'E(X;Y).

Q.E.D.

Note that the above lemma implies that the rank of
the means sigma matrix M is less than or equal to G;.
Another lemma which we will use in the sequel is

Lemma 3.2. If F, H and L are non-singular square

matrices of the same size, each partitioned as

T,y F
F = 11 12

Fy, Fzz

and if all the diagpnallblocks are non-siggplar, L,, =0,

- [ 3 -1 = |-1 -1
and F = LHL', then F;F, =L} IL 2H21Ln].

. Proof: The conclusion follows from expanding LHL'
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in partitioned form and simplifying the expression for

F;;le by using the assumption that in = 0. Q.E.D.

We now proceed to our reduction to canonical form.

Partition I énd M as follows:

011 Li2\
(\ s (3.2)
$.. L

21 22

my; My,
(3.3)

<
"

My, My,

where P and. Mzz are both Glxel, and let © be a Gle1

non-singular matrix such that

er, o'

"
N ]

22 (3.4

and

L ]
oM, ,©

D (3.5)

where D is a G6;x6, diagonal matrix whose main-diagonal ele-
< s -1 .
ments are the cdharacteristic roots of I,;;M;; arranged in

increasing order. Furthermore, let

w? = 0,,-28'L,, + 8'L,,B (3.8)

and

(3.7)

o E |-

® © Epw
®
[ ]

[
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By making use of Lemma 3.1 and noting-thét“‘

/4 A =gt

-

A _
Y = > o . (3.8)
9 9 I/ A '

it can be verified that

0

o vg
yMy'/ = (3:9)
° D
and
. 1
LYY =@ = “~1 ., (3.10)
L I
where
.9 : :
If we now let
U Uia\ : '
U = ¥Wy' = , o (3.12)
Uy Uzl G
1 Gi

then

to

|- (3.1

And from (3.8), Proposition 2.1 and Lemma 3.2., it follows

. o
-~ Q-

o

that
§ =8 + wo'Uz5U,, . (3.14)
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(3.14) indicates that in general, the 2SLS  (as well |
as the OLS) brobabilit&vdiStribﬁtion depends on the fbllowing
parametefs: g; wy, 8, (2,,- 8'Z,,) and the characteristic
roots of z;%nzz. Tﬁe reduction given by (3.14) leads to a
Wishart matrix U whose covariance matrix ﬂi-is close to
beiﬁg the identity matrix but not quite, see (3.10). Note

that Q=2I if and only if g = i;%zzl.

In the next section, we shall find it easier to deal .
with a Vishart matrix whose coﬁariance matrix is the identity.
Another transformation on U is needed to reach such a
situation. However, as aﬁ unavoidable consequence of this
additional transformation, the resulting means sigma matrix

becomes non-diagonal.

For the additional réduction, define the (G,+1)x(G,+1)

matrix :
‘ . 1 0
/I-pTe

(3.16)
-p I

\VI-pTp
and let

11 Ri\

R = VWUV = (3.17)

.

Ra1 Ry,
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From (3.10), @ is positive definite and lnl 'o. Thus

-~

p'p<l and V is well defined. It can be ea311y verified

from (3.10) and (3.16) that

v'av = I. (3.18)

(+] [}
R~ W K,, I; ¢! ) vi. (3.19)
Gl‘l'l E 22 ? (9 D) ]

Finally, it follows from (3.17) and Lemma 3.2. that

Thus

U;3Up;p = 0 *+ YI-pToR; IR, (3.20)

which implies that

B=p8+we(p+ Jig's RyR 1). (3.21)

22 2

4. EXISTENCE OF 2SLS MOMENTS.

Denote the first components of é and R;;RZI by
B, and 31* respectively. We shall now show that for arbit-
rary 6, and K,, the even moments of él are finite if
the order is less than K,-G, +1 and infinite otherwise. By
(3.21) in the previous section, this result holds if and only

if even moments of B8,* are finite for order less than
v 1 ; .

K,-6,+1 and infinite otherwise.
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From (3.19),

R = S'S

(4.1)

where S is a 'sz(Gl+1) matrix whose elements are ﬁutually

independent normal random variables with unit variance and

means such that

0 0
(ES)'(ES) = ¥! v
o D

Partition S as follows:

S = (§1 Sz) K2
1 GI
= (g, 5, S3) K,,
1 G,-1

so that from (4.1), we get
“lp L -1
RZ72Rpy = (835,)1778;s,,

and let
(s!s, ) = .
2% viz y33/ g -1

1 6,-1

To prove our result on the existence of moments of

we use the following lemmas concerning v22.

~

Bl,

(4.2)

(4.3)

(4.4)

(4.5)



Lemma 4.1. Given S, (v22)~1 is conditionally

distributed as a non-central chi-square variate with K,-G,+1

degrees of freedom and non-centrality parameter
1?2 = . E s, [I—S (S8, )~ S'] Es,.

Proof. From (ﬁ.s),

. -- -1
(v22)=1 = v,,-V3,V33V3,

' =1
o3 [1-55¢535, 7 s}, -

The random vector 82, being the second coluﬁn of S, is a
Kz -dimensional normal random vector with covariance matrix
I and non-zero mean vector. Furthermore, I-S3(Sgss)-185
is a K,xK, idempotent symmetric matrix with rank K,-G,+1.

Hence the lemma holds. Q.E.D.

Lemma 4.2. Por m an arbitrary real number,

(1) E(v3H)M < 4o if 2m < K,-G,+1.

(i1) E(v32)T = 4o if 2m 2 K -G +1.

Proof. Let n = K,-G,+1 and let 12 be as defined
in Lemma 4.1. By Lemma 4.1, we get (v22)~! given S, is
conditiohally distributed as a central chi-square variable

with (m+2J) degrees of freedom, where J is a Poisson varia-
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2

ble with parameter 7 Thus,

, n+2j _
_-y/2 _rL - m-l
e Y

- 2/ I ¢ 2/ )J )
E (v22)Rig =z T/ ¢ (12/2 : dy .
2 r3g)
‘Each term in the infinite series is positive and the first
term (for j=0) is += if n S 2m. Thus, E(v22) = +m, if
n £ 2m.
Now, suppose .n ? 2m. Then ‘ _
- n+2j
2 ® 27,y T - m)
22 - o~T%/2 (t2/2) ‘o -m
E (v¥2)7|s, = e R s o 2
, j=o P(—;—l)
. -m
) » 27,3 ' - m)2"" _
A<e'r/2 r (%/2) max 2 b2~
- . 3 n
j=o I'(-z-)
. -m
r(z - m)2 -m
= max ' 2 .
n
re;)
This implies that
22 I8 e ‘r(g -m),™® ™
< ..
E(ve4)” Z:max - > {. Q.E.D.
< I'(z—)

Theorem 4.1. Let 51 be the first component of g .
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Then for m an arbitrary 1nteger, E(8,)?™ is f1n1te 1f

2m < K -G +1 and 1nf1n1te if 2m b KZ-G +1.

- Proof. It suffices to prove that the conclusion of the
theorem holds for 81*. Now let qa; be the first component
of ¢ = (SQSZ)-185(§1- Es;). S, and s, are independent

and hence

als, - Ng { 9,(5532)"],
1
which further implies that
e, |s, ~ N(O, v22),
Therefore

2m - E(vy22y2Mm -
Eal c, ( )

where 53 =1.3....(2j-1) for j > 1. By Lemma 4.2., it

follows then that

2m o i -
Ea 2B < + = if 2m < K,-G,+1

(46)

. = + ®» if 2m _>_ Kz"Gl+1o

We now show that a necessary and sufficient condition
for the finiteness of E(8,%)2™ is that Ea;2™ is finite.

Then the theorem follows. from (4.6) above.
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Let ¢' = (El,...,EK ) be the first row of (SiSz)-IS'

2
2
so that
ay = §'(s,-Es;)
K,
= 3 E.(s;, -Es;:,)
jzy 1 11704 (4.7)
and
o K2 |
81 s E'sl = z.Ei sil' . (uoe)
i-1
Note that § and g, are independent of each other and
K, ,
I g2 = v22 (4.9)
i=1 3

since the conditional variance of a; is v2?2, and also

K

H~MMN

£;2 by (u.7).
1 .

i
Now, suppose Ea,?® < +=, Then by (4.6), 2m < K,-6,+1
and hence by Lemma 4.2, E(v22)R < +=, or equivalently,
K, n :
E (.21 512) < +=. This implies that E ;2™ < += : for
i=

i=1,2,...,K and hence E(g;5;,)2™ < += for i = 1,2,..3K,
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since €; and s, j; Aare 1ndependent and all moments of 8;
exist. This finally 1mp11es that E( L 'i s; )2m is finlte

or equivalently, E(g,*)2m is finite.

To ‘show that the other dlrectlon .of the 1mp11catlon

also holds we write

E (B, #)2m|g,

;’go R [Eca, *1s,0]2m-h Efap s, ]

mo 2(m-3) 3
" 3o 2 2:,>[E( #15,0] 2 (vazy3

1]

m-1 -
cm(vVID™ + I o (GHve)ifkah, s, T
o i=o

(4.10)

where ¢ =1 and» Cpys j=1,2,..., m are as defined previously.
If Ee,)?™ = 4o, then 2m > K,-6,+1 and hence E(v22)M = ta,
by Lemma 4.2. This implies that E(Bl*)zm—:.+“ since all the
terms in (4.10) are non-negative. This completes the proof

By Proposition 2.1,, we also'haye the following result
concerning the OLS estimator as an immediate corollary to

Theorem 4.1.
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~Corollary 4.1. Let 51 be the first component of

the OLS estimator of @. Then for m an arbitrary integer,

E(§,)?™ 1is finite if 2m < N-K,;-G,+1 and infinite if

2m _>_ N-Kl-Gl'l'l .
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