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Sﬁmmary

This papér presenfs the exéét finite-sample_
distfibutibn'of'the limited-informatidn maximum likeli-
hood (LIML)'estimator when the structural equation
being estimatedﬁéontains two endogenous variables énd
is identifiable in a complete system of lineér-sfophasf
tic equations. Since the density function obtained is
an infinite series of a complicated'form it is difficult
to deducg meaningful conclusioné about the exact distri-
bution of the LIML estimator. However, it reveals the
importaﬁt fact that for arbitrary values of the parame-~
teﬁsAin the modél, the LIML estimator.doeés not posseés.

moments of order greater than or equal to one.
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1. INTRODUCTION

- The exact finite-sample distributions of the ordi-
nary least squares and the two-stage least sQuares estimators
have been derived in a fairly general model. For example,
see Richardson (10) and Sawa (11). In this paper we will
further derive the e#act distribution of the limited-infbr-
mation maximum likelihood (LIML)~estimator in fhe same
frame-work as in Sawa (11), which will be briefly described
in Section 2. .

Our derivation of tﬂe distribution of the LIML esti-
mator essentially depends upon Anderson and.éirshick (5)'s
non-central Wishart distribution. The well;known Wishart
distpibution is the diétribution of the samp}e covariance
" matrix from a multivariate normal population with constant
mean vector and constant covariance matfix; The ndn—centra}
Wishart distribution is the-distribution of the sample covar-
iancg'patrix,when the observations arise from a set of normal
multivariate populations with constant covariance matrix and

?xPected values that vary from observation to observation.

The stochastic progess underlying a complete system
of linear stochastic equatiqns may be regarded as a non-

central situation in the sense  that the endogenous variables
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are supposed to be normal.variateé with constant éovariapce
matrix and expected values that vary corresponding to the
‘values of the exogenous variables. Thus, the non-éentral
Wishért distribution theory provides d starting point for
finding the distribution of various estimators_df parametérs
in a complete system of linear stochastic‘eqﬁations. Some
important theorems about the non-central Wishart distribu-
tion and other related théorems are summarized without proof

in the Appendix.

2. -SPECIFICATIONS AND NOTATION

Suppose we are interested in the distribution of the

LIML estimator of B8 in the structurél equation-
y, = ylﬁ + ZIY1 + ZZYZ + u | (2.1)

iﬁ a complete system - of linear stochastic equations, wﬁere

y, and y, are N-component vectors of in@ependent observa-
tions on two' endogenous variables; Z, is a N by K; mat-
rix of N observatibns on K; exogenous vapiabléé and Z,
is a N by K, matrix of N observations on K, ( = K-K;)
exogenous vériablés; Bsyy, ahd Y, are unknown structural
parameters; and u is a N-cﬁmponent vector of disttrbance~

terms.

Our system is assumed to include ﬁo‘lagged endogenous

variables and to be composed of at least two ‘equations. The
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Ky (1) structural parameterq Ya are supposed to be zero

for the identifiability of the structural equatioh (2.1).

The reduced form equations for y; and y, are

Y = 2,0, + 2,0, +V, R (2.2)

where Y = (y;'yp); M, = (I;; Mp) and 0, = (Np, ﬁzz)

Aﬁe respectively - K, by 2 apd K, by 2 matrices of unknown
coefficients; V 1is a - N by 2 matrix of random distufbance
terms. The rows of V are assumed to be mutually independent
and identically distributed.as normal with meaﬁ vector 0 and
2 by 2 ﬁqsitivé definite covariance matrix |

,,;-= ol - | (2.3)

For the sake of the existence of the LIML estimators, we

further assume that NzK#Z.

. "As is well known,‘the LIML method makes use of all
the exogenous variables in the system in order to estimate the
parametefs of a single equation, but does not require a detailed i
-specification of thé other structural equatioﬁs in the system.
Therefore the specifications described above abé sufficient

for us.to derfvé.the'sampling distribution of the LIML estima-

tor. That is to say, our following results hold true whatever

the remaining part of the complete system may be.

In the following, we zssume for convenience that



NT1z21Z, = Iy, N121Z, =g, 2% 7 0 (2.%)

where In is the identity matrix of dimensjon -n. It can
be verified that these asSumptiohs cause no loss of generality.

For example, see Anderson and Rubin (6).

3. JOINT DISTRIBUTION OF THE CHARACTERISTIC ROOTS AND
'VECTORS

Define the following 2 by 2 matrices:

A% = (Y - ilﬁl)!'(y - 2,0,) = Y - Nﬁ;ﬁlg (3.1)
o* = NRJT, | | (3.2)
Wh s A% -G o= Y'Y - NR{N,- NN, , (3.3)
where ﬁl' and ﬁ are the ordinarylleast squares estimators

2
of the reduced form coefficients @, and I, respectively.

Obviously W#* is the residual sum of squares matrix of the
biVariafe normal regression model (2.2). Henée from Lemma
A.2 in the Appendix, we can immediately see that W* is dis-
tributad according to the central Wishart distributioﬁ |
W(L, N - K + 1). Referring to the usual multivariate normal
regressioﬁ theory, it is obvious that ﬁz is independent of

W#* and each element of ﬁz, i.e. 'ﬁii) , is normally distri-

buted with mean value.

ECaf2)) = x{2) (= 1,...K; k = 1,2), (3.4



and variance-covariance

EG{2) - A(z))(“(z) - u§§>)>- doss kh(l,j =1,...,K,; k,h=1,2),
| o ' (3. 5)

where the Gkh'sv are Kronecker s deltas and w§i). is the
(i,k) element of nz. Hence the Jﬂ(%(z) (2))' are mutual-
ly independent and normally distributed with non-ldenticél-

mean vector Iﬁluii) wéi)) and identical covariance matrix

I,

From (2.1), (2.2), (2.4) and the identifiability res-
 trictions, it follows -that |

Bly, = My, - (3.6)
Then the means sigma matrix (see Lemma A.1 in the Appendix) of

(z) £2)).
Iﬁlw "ok ). is

T® = Nn2'n2 = (Nn21 21) G gz) ' . (3.7)

- The rank of T#* is clearly equal to 1. Hehce, from Lemma
A.2 and the above remarks, G* is seen to be independent of

W* and distributed according to the non-central Wishart dis-

tribution’ W'(L,T*,1,K, + 1).
Now, consider the determinantal equation
|We - AA%| = |W& - A(W* + G®)| = 0.  (3.8)

Clearly, the roots of this equation are positive and less



than unity; Let the roots be ordered such that D<ay<rg<l

(since the probability of two roots being equal is 0). Let

“f’,= (u’fl ugl) and ug' = (ufz ugz) " be veétors such that

T (W® - A _A®)u¥* = 0, i = 1,2.
1 1l

~

Then the LIML estimate of g, i.e. B, is given by"

(see Anderson and Rubin (7)).

.

(3.9)

(3.10)

/

Let 12 be the positive~root of the determinantal

equation

C|T* - az] = 0.

Then there exists a nonsingular 2 by 2 matrix ¢ =

such that
*t T o = 1,,

and -

2 0 .
o' T* ¢ = . T.
\0 0
By using (3.7), it can be shown that

2 =z (°22'28°12+B?°14)

011022-0%

(NI, 18,4)

143 )

(3.11)

(3.12)

(3.;3)

(3.14)



= v? (N, 'n |
TET“ 21 21%
where

2g

v E (05m280,,%8%0,,) = (B DE(E) L (3.15)

1
And from (3.12) and (3.13), it can be deduced that

B 1
|zl% 8lzlz
$"1 = '

. © . (3.18)

1
v L - ¥ - .
BO1179,2:8912,7%,

If we now let

W= o' Wr oo,

G =o' Gk o,

then it follows from Lemma A.3 that W and G are indepen-
dently distributed according to W(I , N-K+1) and W'(I,,T,1,
K,+1) respectively. Thus the>5oint probability density func-

tion of W and G is given by

el 2 lemiwoay . lex. o 1
¢ e W HNK-D) o HIG-8) A[_ftr. (W+6)] L A
, T2
(3.17)

where gil' is the (1,1)th element of the matrix G and

1 xy20 :
R, (3.18)

Hm(x) = ;
: a=0 a!Tr(m+a+l)

c;! = KL Ef (N-K)] F,{%—(&-K-l)] r*[12~(1<2-1)] r[}xg
- - ' (3.19)



Since

]w'-'x(w + 6| = |eor| .}w* - AWk + G*) |.|e] ,
o . . (3.20)

the roots of (3.8) are equal to the roots of
| W - a(Ww+6) | =o0. | (3.21)

The corresponding vector satisfying

W] ug=0, i=1,2 (3.22)

is simply the linear transformation of -u; such that

u, = ¢~1 us | , (3.23)
i i |

- - ' = = -1
Let U = (u.l u,)s A : HA; Gijn and E -||gij"- u-t.
To remove the indeterminacy of the vectors u;, let

U' (W+ QWU =1, o (3.24)

and
eil >0 (i=1,2) . (3.25)

Then the one-to-one correspondence between (W,G) and (E,A)

can be asserted. From (3.22) and (3.24) it follows that
W=E'"AE , 6 =E'(I - A)E. (3.26)

" The Jacobian of this transformation is
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HIEI" (Ay-2)) (3.27)
See, for example, Anderson (3). Hence after a little rear-

rangement and letting‘ p=%(N-K-3) and q:%(xz-3), we obtain

the joint probability density function of E and A:

1e2 LON-K, -
4C,e"Z" IEfBI.I‘N K1-2) oxp (-3trE'E)

ATy () §

) K ' ;
1,320 . il 3! FGE 4+ i+ )

. L] o+‘ -+ v > (]
12(1+J)(1_l ) RARTETPUS L AL BEPLC P
1 2 11 21

p2(itj) (3.28)

for e ,> 0, e, >0, E non-singular and O0<i <) <1.

11 21

4. EXACT DISTRIBUTION OF THE LIML ESTIMATOR

e ' :
Let »r=-"12 | From (3.10), (3.23) and the defini-
e ‘
tion of E, we have 1

118 _ gl2 ‘
D= - 12 - Y12 - ¢ 3 ¢ €u.1)
e, . u A 3
~11 22 ¢218 - ¢2,2
where ¢~1 = u@iji. In this section, we shall proceed to

obtain the probability density function of r ‘and from this,

use (4.1) to derive the density of 8.

Now, integrate (3.28) with respect to A, and 1,

e

and let r = - 2= be & transformation from e,, to r.
1

Term by term integration of (3.28) is allowed and thus, the
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joiht probability density function of (e;,» 5,5 €,,, v) for

eli:_og e21_>_0, -w<ezz<w, —w(r'(oo’ iS

2
-le2

uc.e 2 - 3le? (14r?) + €2 +e2]  N-K;-1 . N-K, -2
1 e 110 21 S22 |
' 11 |®22 * T3y
L o0 . . i 2. . '
x I Y(l,])_efl €5, b, : . (4.2)
1,320 |

where : ®

(g)z(i*j)

\ w (i,3), (.3)
i3 rGE e+ )

‘ .‘ ; A2 . '. o ’ .
w(i,j) = {d.{ 2CA1A2§(1—A1)1+Q (1-1,)3% (Az-xl)'dtl d:zl
A 4.4

and, as ifn the previous section,

p = 5 (N-K-3)

(4.5)
Q= 5 (K;-3) .
The actual evaluation of w(i,j) is-given in Lemma A.4 of .

~ the Appendix. .
" Term by term integration of (4.2)-with respect to e,

“leads to the'fbllowing_joint‘probability density function of

(e21, 322, 1")' fOP 321:_0, -® < 622 < Q’ - < r < @ 2

-412 2 2 - Ky -

4C les, + rep,y |

1
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o 1(N-K,)+i-1 , 23
x T oy,pdo FCERN-K )+i)__ S21 ‘
(1+412)

For simplicity, let us now assume that N-K, dis

an even number greater than or equal to two.S

Then

K, -2 [N-Kl-Z) Kk N-K;-2-k
0

N-K,-2 e (re,,)
k 22 T2 (4.7)

o N
leas + reyy| =1z
k=

and hence, the joint probability density function of (ezl"éiz’

r) as given by (4.6) simplifies to

‘ 1.2 1 2 ) . ' |

-51¢ -x(e + e5,) N-K;-2 » N-Ki-2

uCie 2 e Z f1 * efz) K e )r(%(n-x )+i)
‘ ’ k=0 1,3=0 . .k o

- i- j+N-K, -2-k
2%(N Ky+i-1 k2] 1-2

%—(N-Kr—k)-i
.2 €25 (r2)

(4.8)

HN-K,)+i
(1+p2) '
To derive the marginal probability density function of r, we
.integrate (4.8) with respect to e,, and e,,. Term by’
term integration is permissible and hence we obtain the fol-
lowing expression for the density of r, for -e < pr < w:
- Lz FHON-K;-2) 4(N-K,)-h-1

' s 4 2
2@+ 55,5, D) 2 (4.9)

e z : I
~ h=0 i,j=0 o HN-K )+
- (1+r%)




where

. N-Ki-i-j=  [N-K;-2 '
8(i,3,h) = 2 Cr | 5y | wi,i)

F(h+D) FRN-KD+DT(E(N-K -1)+5-h) | (4.10)

r¢i) r¢3)d r(%x2+i4j)

ahd w(i,j) is the double integral given in (4.4). Finally,

by making use of (4. 1), we obtaln the follow1ng probability

density function of 8 > for -® < B < ™

-ie2° L LN-K,-2)

2 2 © . 7 * .
e el = L { 6(i,3,h)r2(i*3)
2 F(N-K;)-h-1

[(e115-¢12)°] [(4215- @22)2]
HN-K1)+i

[<¢11§;¢12)2’+.(¢21§_¢zz)21

bo(w.11)

with 6(i,j,h) as given in (4.10).

If 8 = 912 , note from (3.16) that. $21 = 0, and
thus, 1t can be seezlfrom (4. 11) ‘that in this special case,
,B is symmetrlcally dlstrlbuted around the true parameter s
In this respect, the LIML estimator shareg a common charac-

teristic with the ordinary and two-stage least squares esti-

mators (see Sawa (11) ).

In the general case where assumption (2.4) con-

cerning the orthogonality of the columns of 2 ‘is not

M
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necessarily satisfied, the means sigma matrix for G* is

given by

Té% = 42 (1 8 ) , (4.12)

| -1 ST
where w2 = 1,] 2)(I-2,(2]2,) 2])2,0,,. Comparing the above
expression with (3;7), we deduce that the probability density

function of B in this case is also given by (4.11) with %

replaced by 12, the positive characteristic root of L™1T#%,

Using (3.16), we can further express the deéensity
of B in terms of the original paramefers'of our model. We

state the final result in the following theorem:

Theorem 4.1. For the case where the structural

equation being estimated contains two endogenous variables

and K1 exogenous variables such that N-K, 1is an even

number greater than one, the probability density function of

the LIML,esfimator E is

1,2 L(N-K,-2) ' ' 1(N-K1-1)-h
“%Az % 1 ® PR 2 T
r - {G(i,j,h)1251+1) (04,92,-07,)
h=o isj=o0 '

3(N-K; ) +i-1

2
(022-28012+8 o,,)

11

L(N-K )-
[ﬁ-ﬂ)%} h- 1[ 22-0,, (B+E)+a ]2(h+1)

Z{N =K )+i
(022—20128+01182)



for - ® < § <o ; where

.)‘2

u2(023-28012+820'1 1i)> ’

2
g -
11%9227%2

]

nziz;KI-zl(z;z,)"z;)zznZI_,

and 6(1,J,h), as given in (. 10), depends on the parameters

N, K K

5. NON-EXISTENCE OF MOMENTS

The mathematlcal structure of the den81ty functlon
Just derlved is so complicated that it is dlfflcult to deduce
any more deflnlte conclusions about the form of the density
funcfion of the LIML eetimator.v However, it reveals the
important fact that the LIML estimator does not possess even
the first;order moment, regardless of the sample size or the
number ‘of the ;dentlflablllty restrictions. This is an im-
'medlate consequence of Theorem 4h.1 81nce by elementary calculus, -

the ‘integral

S x”
- (ax2 + bx + ¢)

m-——dx
converges if and only if 2m > r + 1, where a # O.

For other single-equation estimaters, Sawa (11) has

shown that the ordinary and the two-sgage least squares esti-
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mators of 8 ‘possess finite moments up to order N-2 and

K,-1 respectively.

| However, the existence or non-existence of moments

| alone can hardly be used as a basis for determining thé merits
of the various estimators. For instance, one may be compar-

" ing a Cauchy distribution which is very concentrated and a
normal distribution with an extreﬁely large standard devia-
tion. Pinally,;the main result in this papér indicgtes that
in comparing the small-sample properties of the LIML method

" with other estimation . methods, moments should not be used
as a criterion of the goodness of an estimator. Such a cri-
terion will clearly give results unfavorable to the LIML

estimator, since it does not possess moments of any order.



APPENDIX

Suppose the p-componet .vectors Xl,;.., XN (N > p)

are mutually independent such that Xa has the distribution

N(ud,z) where the mean vectors u sUjs.e.s Wy need not be

all identical, Let

N N — —
A =-»Z (Xa-X)(Xa-X)'
a=1 v :
N — —
T = I (uaeu)(ua-u)'
a=1l
where
N _ N
X=1¢1¢ Xi, w=12Z u,,
N a=1 N a=1

" and let .the rank of T be t. A is said to have a Wishart
distributioh of order p, with N-1 degrees of\freedom,'co—
variance matrix : and means sigma matrix T. This distri-
bution ié denoted by W'(z;T,t,Ni. If f : o,.the distribu-

tion is said to be central and is denoted by w(z, N).

~Lemma A.1. For .t = 1, the joint probability densify
function of A(see Anderson (4) and Anderson and Girshick (§))
is

LN-p-2) '
K |A|2- exp (—%tr r~1a)

—f(N-S)
x (tr Az”iTz"l) expv(—%trz'lT)
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Cx I (/tr AL TTg-1)
T ThNeny ’

where

A W _ - p-1
k-1 = [ EON-D RO ip(e-1) PR Ly g5y

i=1

o +2,
) = § (BHT

azo a.r(n+a+l)

Lemma A.2. Suppose the p-component vectors X;,...,

XN (N>p) are mutually independent such that X - has the

-distribution N(BZa,x)‘ where the"za's' are ncn-stochastic

K-component vectors and B is a pxK - matrix of unknown cons-

: . N N
tants. Let B = I X, 2! C  where C = I 2z,z, is assumed
: a=1 : a=1
: | N o a
to be non-singular. Then I XQX& -BCB' is distributed
- e

according to W(:,N-K+1) and is independent of B.

For the proof of this lemma, see Anderson (3), .

pp. 83 - 84 -and p. 183..

Lemma A.3. Suppose A- is a p by p matrix and
is distributed as W' (£, T, t, N). Then ¢' A ¢ is distri-
buted as W' (¢'Zy, v' T ¢, t,y, N), where ¢ is an arbitrary

p by p 'nonsingulér matrix.
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Lemma A.4. Let p, q and w(i,j) Dbe as given in -

(4.4) - (4.5)., Then, for i+j+K,>2,

w(i,3) = B(2p+3, j*ta+l) ,F, (p+l, 2p+3, -i-q;2p+i+tqts,p+d; 1).
‘ (p+1)(pt2) - ‘

Proof. Denote the complete and incomplete Beta functions

(for r, s>0) and the generalized hypergeometric series by

the following, respectively:

1 |
B(r,s) = ' x" 1(1-x)%71ldx (A.1)
0 o
By(r,s) = . xP~1(1-x)571dx, Ozt<l. ' (A.2)
0
‘ w . (a ). . .(a). h
. . o - 1 h oo o "m h x B
an(al’o.‘,a Y b ,o..,b ’ X) hio (bl)h'..‘;(bn)h 1’—1!-
| (A.3)

where (a)0=1 and (a)h= a(a+1)...(a+h-1) for h=1,2,... .

Nofe that

. o
t .
Bt(r,s) = . ZFI‘r, 1—§; r+1?vt) (A.4)

(for example, see Erdelyi (8), p. 373). We also refer to

ri

. - .
TS ‘L f(y)(l—y)zlldy, 2>0

as the Riemann-Liouville integral of f(y) of order 1z, (see

Erdelyi (9), p. 181). .Now, for w(i,j), we have to evaluate



integrals of the form -

Y oy,
[1;[ xF1(1-x)8 1y~ laxdy
0 0

1

13
o~

By(r,s)yd-! (1-y)V'1 dy (A.5)

by (A.2). For O0<c<1l, by the dominated convergence theorem,

we have

. 1 -
J(r,s,u,v) = lim ] B (r,s)yu-l(l_y)v-ldy ‘
1 0 &Y
_ = lim Ju(r,s,u,v), say. (A.6)
. c-)i . |

Furthermore, by (A.4), J (r,s,u,v)_is the Riemann-Liouville

integral of _E_ ,F (r ,1-8; r+l; cy) yr+u— } of order V,

and hence, from Erdelyi (9), p. 200, we get

T
Jolr,s,u,v) = £ Blr+u,v) JF,(rtu,r,1-s; riutv, r+l; c).

(A.7)

p

From (4.4) in section 4,

W (i,j) = J(p+l,i+q+1,p+2,j+q+1) - J(p+2,i+q+l,ptl,j+qtl)

. A 1 s
B(2p+3,j+q+1) 11? {p+1 oF 5 (2p+¢ ,p+1,-1 -q; 2pt+jt+qtth,

(2p*3, p+2.-1~q, 2p+i+qih; p*3; c)}
(A.8)

- 1
p*2; ©) “p*2 32
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_ B(2p+3,j+q+1)

=t (pt2) i 3F2(P+1’2P+31“i'Q5.2P+j+Q*“:?23;)°)'

(A.8) follows from (A.7) and (A.9) is a simplification.of (A.8).

. Now, consider the hypeﬁgeomgtric series_ip (A.9).
In absolute value, each term in the expansiqn of this'series
is less than or‘equél to the corresponding term of - ,F;(2p+3,
-i-q; 2p+j+q+u; ¢) which in turn absolutely converges for
le] =1 if i+j+2q+1>0, (see Abramowifz and Stégun_(l),
p. 556). Hence the hypergeometric series in (A.9) ﬁnifofmly
converges for |c|<1 and |

. .. _ B(2p+3,j+q+l) » . .
w(i,j) = (P+§)(§%2§' 3P2(p+1,2p+3,-1—q; 2pf]+q+u,

p+3; 1) for i+j+2q+1>0 oOr equivalently, for it+j+K,>2,

by (4.5) of section Uu.
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“Consider the case where the equation being esti-

mated contains no exogenous variables so that vy, = 0 in

(2.1). If we redefine the matrices A%, G*, W& and T*

as follows:

A%

= Y'Y
G* = Y' (22")Y = NI'm
Wt = Y'(I - ZZ')Y = Y'Y - NI'T
T* =

Ni'n
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where Z = (z, 2,) and 7' = (ny n;), then 8 is as given
in (3.10) and W* and G* are independently distributed

as W(Z, N - K+ 1) and W'(r, T*, 1, K + 1), respectively.

Thus, the ~nddition~l assumption that there are no
exogenous variabies in the equation béing estimated leads
oniy to changes in the degrees of freedom and the meéns sig-
ma‘matrix for the non-central Wishart matrix - G¥, the rank

.of the means sigma matrix being the same.

It can be shown that the above remarks also hold
for the general case where there is an arbitrary number of

endogenous variables in- the equation being eStimated.

5To derive the density of r, we assumed that
N;- K, is even so that we can use the binomial expansion

given by (4.7).

For the general case of arbitrary N-K, (not

necessarily even), we can proceed from (4.2), let y =r;ZL
: ' _ : v 2)

be. a transformation from e;; to vy, - derive the joint pdf

~of (ey1, €21, r, y) and integrate this expression with res-

pect to e;;, e;; and y. The presulting marginal density of

2w N-K;-2+i+j

- N"Kl
nCre 2 T . y(i,3) 2

r8=Sy 1 (=)



1 ©
L HN-K 1)

. N-Ky-2
(r?) e 11ty 1=

. dy
' %—(N—Kl )"’l :

L(N-K;)+5
(1+r2) 2 o

(1+r2y?)

for - ® <p <» , It can be verified that the  above expres-

sion simplifies to (4.8) if N-K, is assumed -to be an even

number,
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