Institute of Economic Development and Research SCHOOL OF ECONOMICS University of the Philippines

LANCE OF THE PARTY OF THE PARTY

Discussion Paper No. 68-12

April 1, 1968

INCOME GROWTH AND SAVINGS

by

RODATE REPORT OF THE POLICE PARTY OF A

Jeffrey G. Williamson, 1935-

NOTE: IEDR Discussion Papers are preliminary versions circulated privately to elicit critical comment. References in publications to Discussion Papers should be cleared with the author.

Wash yay

INCOME GROWTH AND SAVINGS*

by

Jeffrey G. Williamson
The University of Wisconsin
and
The University of the Philippines

coherent growth models which employ a classical savings function but postulate a neo-classical production function with perfect competition. Conversely it is easy to analyze a model where there is "learning by doing" and an absence of perfect competition and yet savings are proportional to income. The question, which kind of savings hypothesis is appropriate, is not one of belief and dogma but of fact."

Hahn and Matthews, 19647

^{*} Thanks are due to José Encarnación's thoughtful criticism of this paper and to the research assistance of Duane Kexel and Francisco Aseniero. A revised version of this paper will be forthcoming in the Philippine Economic Journal.

1. Introduction.

The growth pessimism of the 'fifties in Asia has been partially dissipated by the evidence of wide disparities between marginal and average savings rates. The present flood of two-sector, two-factor growth models has, as a rule, accepted the classical savings hypothesis and thus views the current rise in domestic savings capacities with no surprise. The focus of these models, of course, is both on the profits share and on the functional distribution of personal income. The present paper does not attempt a challenge to the classical proposition. Instead, it begins by recognizing the important contribution of voluntary household saving to high overall marginal savings rates in Asia. We then attempt to supply an additional explanation for the impressive increase in Asian savings rates.

We might begin by recognizing that the simple

Keynesian savings function has long since been replaced by more

complex hypotheses which make the savings decision dependent

upon the events of many preceding periods and also expands it

to include the stock of wealth. 1/ The consequences have been

^{1/} And, in good neoclassical tradition, even interest rates. See Wright /1967/ for a recent attempt, and this time successful, to estimate the substitution effect of a change in the interest rate. On the other hand, Zellner, Buang and Chau /1965/ were less successful.

profound. The permanent income hypothesis, the wealthconsumption hypothesis and the life-cycle hypothesis all question the traditionally assumed causal relation between savings and income growth. The challenge, of course, comes from quite a different sector than that which spawned the savings paradox in employment theory. The new hypotheses appear to suggest that even under conditions of full employment, the savings ratio can readily be determined by income growth. This somewhat startling result is forthcoming even if we assume a constant rate of return on assets and/or we assume a perfectly inelastic saving response to a rise in the rate of return on assets - a rise which is likely to be closely associated with a quickening in growth. Given the rapidly accumulating research on aggregate production functions and technical change, even accepting the factoraugmenting thesis without criticism, $\frac{2}{\sqrt{1}}$ it would appear that

^{2/} The disembodiment thesis awards very few medals to capital formation as a contributor to growth. The more sensible factor-augmenting and vintage models, most recently summarized by Solow 1967, restore capital formation somewhat to its traditional position of prominence. However, even those models leave us in some doubt. R. Nelson 1967, in discussing the impact of aggregate production function research on growth policy, has underscored our uncertainties about the

rapid income growth is as likely to produce higher savings ratios as vice versa.

hypotheses have been applied to the less developed world. In fact, Malinvaud /19667, for one, has suggested that these hypotheses "may perhaps be incapable of generalization to less wealthy countries."3/ A few years ago, Ball and Drake /19647 argued that the permanent income and life-cycle consumption theories "impose upon the individual consumer a rigorous course of intertemporal utility maximization, simple to assert, but difficult to execute."4/ If such calculus is difficult in an environment of stability, near

^{2/ (}cont.) magnitude of the embodiment effect (p. 481). Nelson argues that these models do not indicate how much gross investment is required to keep a nation's stock of capital from falling out of date nor how much more would be needed to update embodied technology. See also Hahn and Matthews /1964/.

Malinvaud /1966, p. 117. A more intolerant position is taken by Vanek: "... none of the existing theories of saving - whether the Keynesian, or that based on the so-called permanent-income hypothesis, or that based on the so-called relative-income hypothesis - is really adequate to explain the phenomenon of savings in many, if not most, less developed countries." J. Vanek, Estimating Foreign Resource Needs for Economic Development, (New York: McGraw-Hill, 1967), p. 22.

⁴/ Ball and Drake $\sqrt{19647}$, p. 63.

certainty and near perfect knowledge, one certainly doubts its applicability to the less affluent environment of instability, uncertainty and highly imperfect knowledge. Even granting as much, this still leaves an abundance of sensible hypotheses which are rich in policy implications for the developing nations.

theories engender, and their profound implications for policy, there has been very little empirical exploration of them within the environment of Asian, African or Latin American households. Most less developed nations lack annual economic series of sufficient length, and have no quarterly data at all, making time series tests almost impossible. The research by Pavlopoulos 1966 on Greece is one exception to this generalization and Williamson 1967 is another. The latter attempts to overcome the national data constraints by utilizing intertemporal cross-sections from Asia. Section 2 reviews some, but certainly not all, 5/

^{5/} We exclude, for example, the permanent income and life-cycle variants although the conclusions here are similar. "The saving income ratio may be an increasing function of the rate of growth of income. This could be so because of the life-cycle element in savings" Hahn and Matthews /19647, p. 799. For an excellent, though dated, review of the literature see Ferber /19627.

of the theoretical literature which appears to us to be especially promising and scrutinizes the important implications for underdeveloped economies, namely that "low rates of savings . . . may not simply be the cause of low rates of income growth, but also the effect of low rates of growth." 6

2. A Brief Review of the Hypotheses.

2.1 <u>Distributed Lags.7</u> We begin in an elementary fashion by making consumption linearly dependent upon the incomes of preceding periods.

 $\boxed{1} \quad c_t = \alpha_0 Y_t + \alpha_1 Y_{t-1} + \dots + \alpha_h Y_{t-h} + \beta + \epsilon_t.$

and where $(C_t - \varepsilon_t)$ can be interpreted as "planned" consumption in t. If we assume the incomes of all preceding periods to be constant, then α_0 becomes the short-run marginal propensity to consume. When all present and past incomes are increased by one unit, then the long-run marginal propensity to consume is defined as h α_i .

^{6/} Ball and Drake 1964, p. 70.

^{7/} This section draws very liberally on the excellent exposition in Malinvaud /1966/, pp. 102-135.

^{8/} Ball and Drake /1964/, p. 68, argue that this is both a long-run marginal propensity to consume and the coefficient that obtains under stationary conditions. On this point, see also Lydall /1963/, p. 244-246.

Since all the α 's are positive the long-run mpc exceeds the short-run mpc.

Now current consumption can, of course, be replaced by the difference between current income and saving. By doing so, 1 can be rewritten

$$S_t = (1 - \alpha_0)Y_t - \alpha_1Y_{t-1} - \cdots - \alpha_hY_{t-h} - \beta - \varepsilon_t$$

and it should be clear that the short-run mps exceeds the long-run mps. The model presented in 2 implies that sudden income changes, such as those produced by a revolutionary plan implementation or by a sharp improvement in the external terms of trade or by a sudden inflow of foreign resources, have a much different impact upon current saving than if the income change is gradual and spread over many years. Furthermore, if the growth rate is constant over h time periods, then each past income level can be expressed in terms of current income and that growth rate, so that the savings ratio becomes stable also. A movement to a higher permanent growth rate raises the saving ratio. In summary this hypothesis suggests that sudden changes in income levels and growth rates in Southeast Asian nations, which previously had adjusted to stable but very low growth

rates, should generate very high marginal and average savings in the short-run. Furthermore, if the rate of income growth accelerates over time, then so too will the long-run average saving ratio.

As an alternative, many economists have hypothesized current consumption to be a function of past consumption levels rather than past income. 9/ Thus,

$$\boxed{3} \quad c_t = \alpha_0 \quad Y_t + \delta_1 c_{t-1} + \dots + \delta_h \quad c_{t-h} + \beta^{\dagger} + \epsilon^{\dagger}_{t}.$$

The estimation of either 1 or 3 is beyond the scope of present econometric methods but many approximations have been offered. One suggestion is simple enough; consider

$$c_t = k_1 c_{t-1} + k_2 Y_t^e + u_1 t$$

$$C_{t} = (k_{1} + \delta)C_{t-1} - \delta k_{1} C_{t-2} + k_{2}(1 - \delta)Y_{t}$$

+ $u_{1}t - \delta u_{1}t - 1 \cdot$

^{9/} Inertia and habit persistence is implicitly hypothesized here. Zellner, Huang and Chau /1965/ recently attempted to distinguish between these and an expectations or permanent income hypothesis. Beginning with

and converting Yt into observables by making the same assumptions as those which appear below on page 10 they estimate

The coefficient δk_1 is insignificantly different from zero, and the habit persistence hypothesis is rejected on the basis of U.S. data. An extension of this model to the LDC would be fruitful.

only one preceding time period so that

according to the two hypotheses developed above. We have already shown that the short-run and long-run mpc's are a_0 and $(a_0 + a_1)$, respectively, in 4. The derivation of these parameters from 5 may not appear so straightforward but a little algebra transforms 5 into

When all the income increases are unity, then we get

$$\Delta c_{t} = \alpha_{0} \sqrt{1} + \delta_{1} + \delta_{1}^{2} + \delta_{1}^{3} + \cdots = \alpha_{0} / (1 - \delta_{1}).$$

which, of course, is the long-run marginal propensity to consume. Since $0 \le \delta_1 < 1$, the long-run mpc must be greater than or equal to the short-run mpc. Similarly, $\boxed{6}$ can be rewritten in terms of saving and the long-run marginal propensity to save becomes

$$\Delta s_t = \frac{1 - \delta_1 - \alpha_0}{1 - \delta_1}.$$

It would appear that $\sqrt{3}$ also predicts that high growth rates may generate high savings since that is the message of its simplest formulation, $\sqrt{6}$.

Expression $\sqrt{57}$ can be derived in an entirely different way, employing different assumptions about economic behavior. We can do so by utilizing the distributed lag model which has become so popular since the contributions of Koyck $\sqrt{19547}$ and Nerlove $\sqrt{19587}$ first appeared. We can rewrite $\sqrt{17}$ as

$$\int C_{t} = \alpha_{0} \sum_{\tau=0}^{\infty} \delta^{\tau} Y_{t-\tau} + \beta + \epsilon_{\tau}, \delta^{\tau} < 1,$$

where we assume that the α coefficients in $\sqrt{1}$ decrease exponentially over time. It then follows that

$$S$$
 $C_t = \alpha_0 Y_t + \delta C_{t-1} + \beta (1 - \delta) + (\epsilon_t - \delta \epsilon_{t-1})$

which certainly bears a striking resemblance to 5.

^{10/} The result that the "saving-income ratio may be an increasing function of the rate of growth of income
... also follows from the hypothesis that consumption is a function of past income (or past consumption) as well as current income." Hahn and Matthews /1964/, p. 799.

2.2 The Stock Adjustment Model Without Wealth. 11/
An even simpler approach is to express the desired level of current consumption as a function of current income

$$c_t^* = \gamma_0 + \gamma_1 Y_t + \varepsilon_t^*$$

Further, assume that the difference between the desired and actual levels of consumption are only partially made up, so that

$$(c_t - c_{t-1}) = (1 - \eta) (c_t^* - c_{t-1})$$

where η lies between zero and one: if $\eta=0$, then the adjustment is complete in one period and if $\eta=1$ the result breeds nonsense. From here

$$(c_{t} - c_{t-1}) = (1 - \eta) [\gamma_{0} + \gamma_{1}Y_{t} - c_{t-1} + \varepsilon_{t}]$$

and finally

$$\frac{\sqrt{9}}{C_t} \quad C_t = (1 - \eta) \quad \gamma_0 + (1 - \eta) \quad \gamma_1 Y_t + \eta \quad C_{t-1} + (1 - \eta) \quad \varepsilon_t^*$$
which is equivalent to $\boxed{8}$, when $\delta = \eta$, $\beta = \gamma_0$ and $\alpha_0 = (1 - \eta) \quad \gamma_1$.

2.3 The Wealth-Consumption Models. All of the preceding models predict a positive association between income growth and the savings ratio. Each is based, however,

^{11/} See Christ /19667, pp. 204-208.

upon a distinctive set of assumptions about consumer behavior. Ball and Drake 1964 offer us an approach even more distinctive (and to many, including the present writer, more reasonable). It turns out, however, that the wealth-consumption models make the same crucial prediction that the savings ratio and income growth should be positively correlated.

Before elaborating the Ball and Drake framework, we might emphasize with Lydall /19637 that the hypothesis which postulates a significant influence of accumulated wealth on current saving is obvious and elementary. 12/
Although Pigou (and Scitovsky before him) focused his attention on the real balance effect, he did postulate a significant negative influence of wealth stocks on saving.

A decade or so later Ackley /19517 made a careful statement of the hypothesis but his contribution was subsequently ignored. Furthermore, Ackley pointed out that the hypothesis predicts stable saving ratios when the growth rate of income is stable and that variations in the saving ratio are produced when income growth is unstable. Most of the

^{12/} Lydall /19637, pp. 228-231.

empirical work which followed during the 1950's more or less restricted itself, however, to the impact of liquid assets on saving.

We mentioned above that Ball and Drake view the permanent income and life-cycle theories as requiring an unreasonable course of intertemporal utility maximization. Instead they postulate shortsightedness and a dominance of a precautionary motive for asset holding. 13/ The utility function

$$u_{it} = F_i(W_{it}, C_{it})$$

is homogeneous to the first degree where W_{it} is current wealth. If we assume proportionality between consumption and wealth

$$\sqrt{10}$$
 W_{it} = k_i C_{it}

and $W_t = C_t \stackrel{\circ}{i=0} W_{it} k_i = C_t k$

where w_{it} is the ith individual's share in total consumption. Combining $\sqrt{10}$ with the budget constraint

and then aggregating, Ball and Drake get

$$Y_t = C_t + kC_t - kC_{t-1}$$

= (1 + k) $C_t - kC_{t-1}$

^{13/} The relevant pages in Ball and Drake /1964/ are 63-70 where the wealth-consumption theory is developed.

and thus (without the stochastic term) we have

$$/\overline{11}$$
 $C_t = \left(\frac{1}{1+k}\right)$ $Y_t + \left(\frac{k}{1+k}\right)$ C_{t-1} .

The only difference between $\boxed{11}$, $\boxed{9}$, $\boxed{8}$, and $\boxed{5}$ is that the Ball-Drake formulation excludes an intercept and further that the coefficients on income and lagged consumption sum to one. For convenience, write $\boxed{11}$ as

$$C_t = (1 - \delta_1) Y_t + \delta_1 C_{t-1}, 0 \leq \delta < 1$$
.

To convert to the saving function

$$s_{t} = Y_{t} - c_{t} = Y_{t} - (1 - \delta_{1}) Y_{t} - \delta_{1} C_{t-1}$$

$$\delta_{1} Y_{t} - \delta_{1} C_{t-1} = S_{t}$$

$$\delta_{1} (Y_{t} - Y_{t-1} + Y_{t-1} - C_{t-1}) = S_{t}$$

$$\frac{\sqrt{12}}{\sqrt{12}} s_t = \delta_1 \Delta Y_t + \delta_1 S_{t-1}.$$

Now 12 is identical with 11 and it turns out below in Section 2.4 that it is similar to the results of the Lydall-Spiro wealth-stock adjustment model.

The growth rate of income can be expressed as the ratio of current to lagged income so that $\sqrt{12}$ can be rewritten as

$$\frac{S_{t}}{Y_{t}} = \delta_{1} \left(\frac{\Delta Y_{t}}{Y_{t}} \right) + \delta_{1} \left(\frac{S_{t-1}}{Y_{t}} \right) \left(\frac{Y_{t-1}}{Y_{t-1}} \right)$$

$$= \frac{\delta_{1} (\lambda - 1)}{\lambda} + \delta_{1} \left(\frac{S_{t-1}}{Y_{t-1}} \right) \left(\frac{1}{\lambda} \right) .$$

Given a constant growth rate, Ball and Drake show what Ackley asserted fifteen years ago - namely that the savings ratio converges on an equilibrium level $\frac{14}{}$

$$\left(\begin{array}{c} \underline{S} \\ \underline{Y} \end{array}\right)_{e} = \frac{\delta_{1} (\lambda - 1)}{\lambda - \delta_{1}}$$

The prediction is quite unambiguous: high rates of income growth produce high saving ratios. Secular stability in the saving ratio must imply stability in secular income growth too. If the rate of income growth is stable around zero, e.g. $\lambda = 1$, then the savings ratio approaches zero also. As the growth rate becomes negative, e.g. $0 < \lambda < 1$, the savings ratio becomes negative. The upper limit on the savings ratio is δ_1 . If the wealth-consumption hypothesis is confirmed, then we are still left with the question of importance. The elasticity of savings ratio response to changes in income growth are determined by δ_1 (see Diagram 1). Quite clearly, an acceptance of this behavioral

^{14/} If, of course, $\delta_1 < \lambda$. Since $\delta_1 < 1$, this becomes crucial only at exceedingly high <u>negative</u> growth rates.

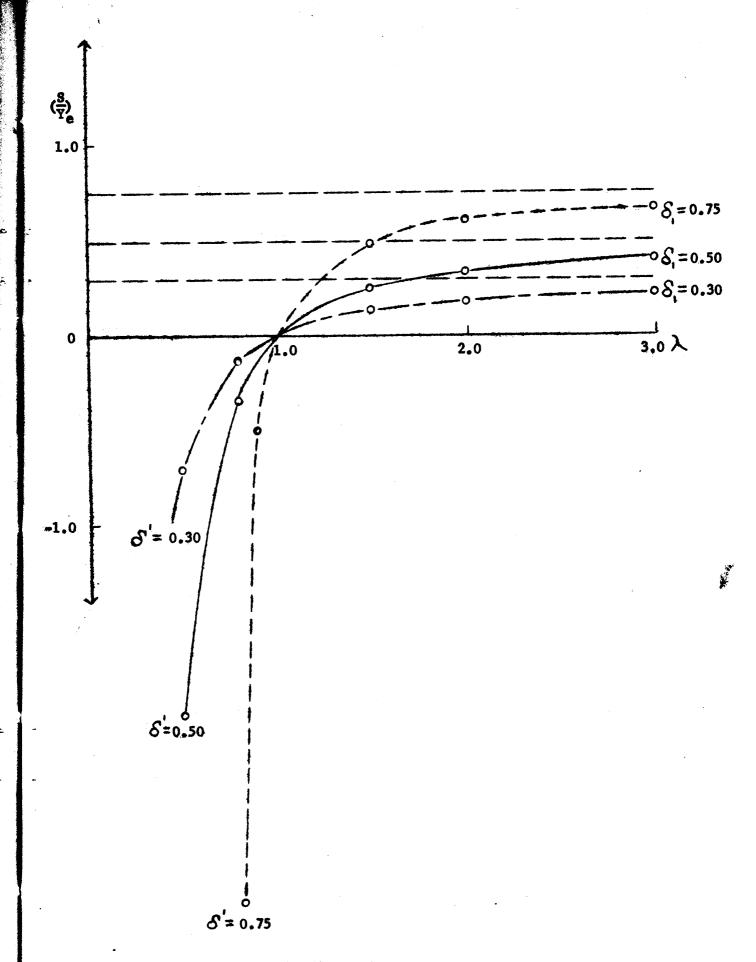


Diagram 1. EQUILIBRIUM SAVINGS RATES AND INCOME GROWTH FROM THE WEALTH CONSUMPTION HYPOTHESIS

hypothesis does not ensure its quantitative importance.

Both issues are evaluated in Section 3.

and Rowe /T9627 reach a similar conclusion under, again, an entirely different set of assumptions. Stone and Rowe view income, consumption and wealth each as having two component parts -- a permanent and a transitory part. Then they hypothesize that permanent consumption is a linear function of permanent wealth and permanent income. Transitory consumption is a function of transitory income only. Both permanent income and permanent wealth are estimated by distributed lag functions of geometrically declining weights. This rather clumsy model also predicts a positive relation between the savings ratio and income growth, and the upper limit is also the short-run marginal propensity to save.

2.4 The Wealth-Stock Adjustment Model. A few years ago Spiro / T9627 developed a model in which "savings are the result of a discrepancy between the actual and the desired stock of wealth" 15/and Lydall / T9637 followed

^{15/} Spiro /19627, p. 399.

shortly thereafter with a similar approach. The basic hypothesis is that

responsibilities, and so forth has consciously or unconsciously - some view
about the 'ideal' relation between the
level of his consumption expenditure during
a given period of time and the amount of
accumulated wealth which he would like to
pass on to subsequent periods. The reasons
for balancing 'passed on' wealth against
current consumption may be various: a
desire for security in old age; a desire
to bequeath property to descendants; a
desire for the income, prestige or power
which wealth provides; or simply a love
of wealth for its own sake. "16/

Thus the individual sets a target (or desired) level of wealth

$$w_{it}^* = k_i c_{it}$$
.

^{16/} Lydall /19637, p. 231.

Assuming a partial response to a discrepancy between last period's actual level of wealth and the current desired level, we have

$$S_{it} = \psi_i (W_{it} - W_{it-1})$$
.

Usually we would write desired wealth as a function of normal or expected income, but if we assume the time period to be short and introduce the budget constraint, then the above collapses into

$$\underline{/13/} \quad s_{it} = \left(\frac{\psi_{i} \quad k_{i}}{1 + \psi_{i} \quad k_{i}}\right) \quad Y_{it} - \left(\frac{\psi_{i}}{1 + \psi_{i} \quad k_{i}}\right) \quad W_{it-1}$$

or to simplify

$$S_{it} = k_i \phi_i Y_{it} - \phi_i W_{it-1}$$

Lydall then makes the usual restrictive assumptions regarding distributional stability so that aggregation is possible, and by considering long period situations he gets

$$\sqrt{14}$$
 $S_t = k \phi Y_t - \phi W_t$.

Since we have no hope of getting observations on the stock of current wealth from the developing countries of Asia, and by recognizing that this year's wealth is last year's wealth plus last year's saving, 14 can readily be converted into 15:

$$\sqrt{15}$$
 $s_t = k \phi (Y_t - Y_{t-1}) + (1 - \phi) s_{t-1}$

which is certainly similar to, but not as restrictive as, the Ball-Drake results given in expression $\sqrt{12}$. Nevertheless, the implication for growth is the same:

"If income continues to grow at a steady rate for some years the saving ratio will approach its 'equilibrium' value. If this process is interrupted by a change in the rate of growth of income . . . the saving ratio will fluctuate sharply."17/

3. The Models Explored on Asian Data.

In the present paper, we further hypothesize that any consumption theory which applies to secular variations or cross-sections within countries should also apply to variations between a group of fairly homogeneous nations. Following the contributions of Houthakker \(\bigcit{1961}, \) 1962 and 1965\(\bigcit{7}, \) Friend-Taubman \(\bigcit{1966} \bigcit{7} \) and Williamson \(\bigcit{1967} \bigcit{7}, \) we shall compare individual country saving parameters with those derived by pooling nations together under the

^{17/} Lydall /19637, p. 244.

assumption that the "taste" parameters in the national regressions are not significantly different. Since we hardly object to this assumption when pooling widely divergent individual households within countries, it is but a short, and not entirely unreasonable, step to appeal to this assumption as between national units. 18/

The data source underlying the quantitative tests has been described in Williamson 1967 and we shall review that description only briefly here. The basic source of our income and consumption data is the United Nations! Yearbook of National Accounts Statistics. The income and consumption variables have all been deflated by 1960 national cost of living indices and are expressed in per capita terms. The data are converted into United States dollars at 1960 official exchange rates.

Early work by the present writer and others has underscored the advisability of disaggregating income into functional classifications when exploring Asian consumption patterns with time series data. These countries are now

^{18/} Given the limited macro data we have on Asian economies, the advantages derived from intertemporal cross-sections are obvious and indisputable.

undergoing profound changes in economic structure over short periods of two decades or less, and suffer important short term variations in income flows associated with devaluation, decontrol and/or factor pricing policy. The income breakdown used here is of three parts: labor income, property income, and transfers. Thus we have

Sit = personal saving in per capita in
 nation i at time t ,

Cit = consumption expenditures per capita
 (including durables),

Yit = personal income per capita,

 Y_{i+}^{W} = wage and salary income per capita,

Yit = non-labor income per capita,

Yit = direct taxes on households minus net transfers to households per capita,

d Y_{i+} = disposable income per capita,

 $Y_{it}^d = Y_{it}^w + Y_{it}^e - Y_{it}^T = S_{it} + C_{it}$.

Furthermore, we define the real rate of interest as the difference between money rates and the rate of price inflation.

Basically, there are two competing models under scrutiny - the wealth-consumption models of sections 2.3 and 2.4, and the distributed lag models of sections 2.1 and

2.2. These are embellished somewhat in the present investigation. Because of the recent success in isolating the impact of interest rates on the savings decision by Wright [1967], we thought it fruitful to do so in our sample too where it is often argued that target saving is more prevalent. A glance at the results presented in Tables 1.B and 2.B indicates once again that interest rates play no apparent role in determining consumption shares - at least in our models as specified. Having said as much the remainder of this paper deals with the more fundamental issues raised in section 2 and the distributional effects mentioned above.

The distributed lag consumption hypothesis

performs very well on this Asian sample judged by the

usual tests of significance. Furthermore, problems of

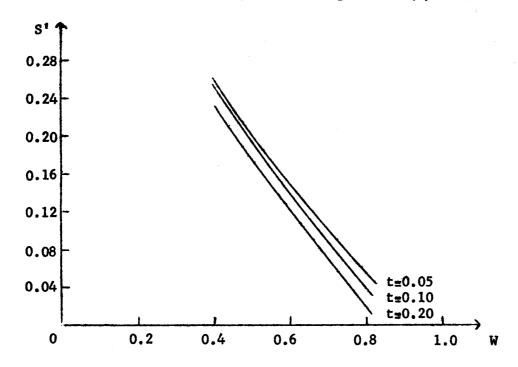
autocorrelation are almost totally absent from our results.

What the distributed lag model underscores, of course, is

the wide discrepancy between short-run and long-run savings

propensities. In fact, according to the model long-run

savings rates are quite low indeed in Asia (with the


exception of Taiwan and Japan) but rapid income growth,

acceleration and short-run instability contribute enormously to the increased ability of Asian nations to raise observed savings rates. In short, high savings rates are now possible in Asia precisely because a predictable world of constant growth rates no longer characterizes the Asian region. These results are presented in Table 2.19/

presented in Table 2.C where the income variable is disaggregated in the distributed lag model. The results here are not quite so easily summarized but we can clearly see that the coefficients are of the expected sign and size. To derive estimates of long-run savings rates, we need exogenous evidence on the functional distribution of income and tax rates. However, the sensitivity of long-run savings rates to variations in the "wages share" is enormous. Assume that a tax rate on personal income of 5 per cent prevails in Asia over a fairly long time horizon. Suppose too that the share of wages and salaries in total personal income (w) falls from .6 to .4 as it has

^{19/} Note also that the requirements that $0 \le \delta_1 < 1$ and $0 \le \alpha_0 \le 1$ are fulfilled.

2-a. Long-run Savings Rates(S') and the Wages Share(W): Asia II

2-B. Long-run Savings Rates(S') and the Direct Tax Share(t): Asia II

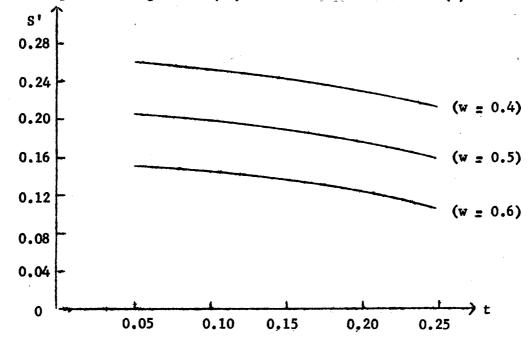


Diagram 2. LONG-RUN MARGINAL SAVINGS RATES, THE WASES SHARE AND TAX SHARE, FROM THE DISTRIBUTED LAG CONSUMPTION FUNCTION

in Japan since 1950. The impact on the long-run savings ratio is to raise it from .15 to .26. (The savings ratio rises twice as fast as w falls indicating a very elastic response.) Alternatively, since the early 1950's Taiwan has undergone a rise in w from .45 to .55. Holding everything else constant, the savings ratio should have declined by 6 per cent. The interaction between the long-run savings rate and the wages share (in personal income) is displayed in Diagram 3.A under the assumption of constant tax rates. On the other hand, long-run savings rates are relatively insensitive to variations in overall tax rates. Assuming w fixed at .5, a rise in the tax rate from 15 to 20 per cent would lower the savings ratio by only 1.5 per cent. 20/

The results of our exploration of the wealthconsumption hypothesis on Asian data are presented in
Table 1. In terms of the traditional significance tests
our estimates are quite reliable. Furthermore, with the

^{20/} This experiment makes the very strong assumption that the actual (as opposed to legal) tax rate on the two income groups is the same and remains so over the experimental period.

TABLE 1.A

61 Ct-1 ao Yt + The Wealth-Consumption Hypothesis (A): Ct =

	Sample	å, 0	8 1 3 0 +	\$ 1	$\delta_1 M_{ax}(\frac{S}{Y})$	×	λ (mean)	* (\ S)	DWT	7~
	•		·					(at mean)		·
1	Japan, 1950-1964	.3230	.6427	.97	• 64	1.799	1.117	.16	2.3981	. 9994
(2)	Taiwan, 1951-1964	.5974	.3671 (.0980)	.97	.37	.912	1.081	• 04	1.7685	1666.
[3]	Burma, 1950-1963	. 692 4 (.0845)	.2255	.92	.23	.291	1.062	.02	2.2228	. 9987
4	Asia I: Japan, Taiwan, Burma, South Korea, and Philippines	.2578	.7349 (.0354)	66	.73	2.772	1.065	.14	2.1283	0666.
(5)	Asia II: Japan, Taiwan and Burma	.2949	.6863	86.	69•	2.188	1.087	.15	2.2339	1666.

TABLE 1.B

 $a_0 \ \mathbf{x_t^d} + \delta_1 \ \mathbf{c_{t-1}} + \delta_2 \ \left\{ \frac{\mathbf{r_t} - \frac{\mathbf{d_{pt}}}{\mathbf{p_{t-1}}} \right\}$ ا در The Wealth-Consumption Hypothesis (B):

DW.J (at mean) $\lambda \pmod{\frac{S}{V}}$ $M_{ax}(\S)$ 7 • â0 + 81 <u>ق</u> 0 Sample

.9994 .9992 2.0559 2.1158 •05 .14 .641 1.081 1.117 1.607 .61 .39 -.0852* .3267* (.3288). 98 .97 (.1041) (.1383) .6240 .3906 .3418 Taiwan, 1951-1964 Japan, 1950-1964

(I)

2,1686 .02 1.062 .287 . 22 -.0117* (.0852) (.0883) .92 .2228 (.0862) (.1013) (:0913) .6954 Burma, 1950-1963 (E) [7]

.14 1.065 2.701 .73 .0616* (.0560) 66• (.0357) .7298 (*0589) .2608 Burma, South Korea, and Asia I: Japan, Taiwan Philippines 4

0666.

2.1338

.9987

.9991

2.222 .14 2.072 1.087 .67 .0775* .98 .3026 .6745 (.0404) (.0513) Asia II: Japan, Taiwan and Burma (5)

* Insignificantly different from zero at 5% level.

TABLE 2.A

The Distributed-Lag Consumption Hypothesis (A): $C_{t} = \alpha_0 Y_{t}^{d} + \delta_1 C_{t-1} + \delta_1 C_{t-1}$

							7
	o Lume S	ڻ 0 ئ	ŝ.	400	LRMPS	DWT	~
	o - June						
13	Japan, 1950-1964	.4771	.3618 (.1584)	15.5822 (6.1871)	. 25	1.9296	1566.
[2]	/2/ Taiwan, 1951-1964	.5975	.2017	14.9443 (5.8945)	.25	2,3585	.9623
[3]	Burma, 1950-1963	.6847	.2201	.6103* (3.3734)	.12	2,2098	.9426
(4)	Asia I: Japan, Taiwan, Burma, South Korea, and	.2964	.6710	2.2748 (.9014)	.10	2.0443	.9971
[5]	Philippines Asia II: Japan, Taiwan and Burma	.3517	.5918	3,4539	.14	2.1091	.9971

^{*} Insignificantly different from zero at 5% level.

TABLE 2.B

The Distributed-Lag Consumption Hypothesis (B): $C_t = \alpha_0 Y_t^d + \delta_1 C_{t-1} + \delta_2 T_t - \frac{d_{pt}}{P_{t-1}}$

Sample	۵ 0 0	Н «о	°9 7	∢&7	Long-Run Saving Ratio	DWT	m_2
/ <u>1</u> / Japan, 1950-1964	.5391	.2582 (.1438)	.5386	18.7073	.27	1.9108	. 9958
/2/ Taiwan, 1951-1964	.5963	.2080	0095*	14.6137 (6.8554)	.25	2.3742	.9624
(3) Burma, 1950-1963	.6868	.2144	0173* (.0933)	.8013* (3.6956)	.13	2,1273	. 9429
/4/ Asia I: Japan, Taiwan, Burma, South Korea, and Philippines	.2987 (.0317)	.6671 (.0426)	.0573 * (.0540)	2.2440 (.9010)	.10	2.0492	. 9972
/5/ Asia II: Japan, Taiwan and Burma	.3528	.5905	.0374*	3.2920	.14	2.0985	.9971

^{*} Insignificantly different from zero at the 5% level.

TABLE 2.C

The Distributed-Lag Consumption Hypothesis (C): $C_t = \alpha_0^{W_W} + \alpha_0^{e_Y} + \alpha_1^{e_Y} + \alpha_1^{e_Y}$

	10	₹*
2 8	. 9955	. 9954
DWT	2.1728	2.4700
₹Ø2	3.2734 (1.5208)	9.0527 (3.1859)
ê1	.8904 (.0429)	.7671 (.0755)
¢۲	1544 * (.1255)	1426*
9 C	.0330*	.1215
\$ C	.1860	.2375
o Lames	/1/ Asia I: Japan, Taiwan, South Korea and the	[2] Asia II: Japan, Taiwan

^{*} Insignificantly different from zero at the 5% level.

exception of Burma (1950-1963), the sum of the current income and lagged consumption coefficients ranges between .97 and .99, 21/ while theory imposes the restriction that they sum to unity. Quite clearly the wealth-consumption hypothesis fails to explain Burmese postwar experience but it performs very well in all other cases. The maximum savings rates attainable by the economies in our sample ranges widely between .22 for Burma and .73 for the full Asian sample. None of these nations approached those maxima, of course, since none of them grew at the impossible rates required of them to reach those limits. Recalling the equilibrium savings ratio as

$$\left(\begin{array}{c} S \\ \overline{Y} \end{array}\right)_{e} = \frac{\delta_{1} \left(\lambda - 1\right)}{\lambda - \delta_{1}},$$

then had these nations grown at constant rates equal to their actual average performance, Japan would have obtained a savings ratio of .14 and Burma .02. The remaining nations fall in between. The model also predicts

^{21/} We were not able to perform a significance test of the hypothesis that these coefficients sum to unity, but their covariance would have to assume unusual values indeed to reject the wealth-consumption hypothesis from all samples except Burma.

wealth-consumption ratios (\underline{k}) which could be used to submit the model to further test - were adequate wealth data available. Again ignoring the Burmese results, \underline{k} varies between quite reasonable limits: from .9 for Taiwan to 2.8 for Asia as a whole.

Mates the elasticity of response of equilibrium savings ratios in the household sector to growth rates in disposable income (see Diagram 3). It appears that in a large portion of Asia equilibrium savings rates have a more elastic response to changes in growth rates than in the Western world. A once and for all rise in growth rates from 2 to 6 per cent per annum would produce the following percentage point increases in savings rates:

Burma	1.1%	Japan	5.8%
Taiwan 22/	2.1%	Asia I	7.0%
United States 22/	2.3%	Asia II	8.3%
United Kingdom ²²	3.9%		

^{22/} The United States (1929-41) and United Kingdom (1950-60) calculations are made on the basis of the parameters estimated by Ball and Drake 1964, p. 76, Table 1.

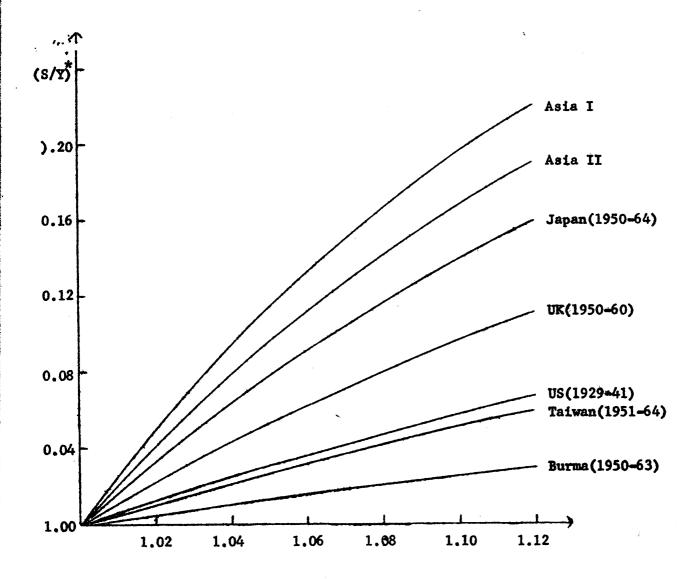


Diagram 3. EQUILIBRIUM SAVINGS RATES AND INCOME GROWTH FROM THE WEALTH-CONSUMPTION MODEL: EMPIRICAL RESULTS ON ASIA

Thus, not only do these results support the speculation that the wealth-consumption hypothesis is "_capable_ of generalization to less wealthy countries"23/, but the quantitative impact of income growth on savings is much more important in Asia than in Western Europe or North America.

of the hypothesis that "low rates of savings . . . may not simply be the cause of low rates of income growth, but also the effect of low rates of growth" 24/ in Asia. Our results for Asia have been confirmed by Landau's work on Latin America and, apparently, by Modigliani's as yet unpublished research utilizing international crosssections. The underlying theoretical models are not always clear in these empirical studies, however, and their use of gross domestic savings rather than household savings seems to muddy the waters even further. The approach used here appears to us to avoid many of the

^{23/} Malinvaud /19667, p. 117.

 $[\]underline{24}$ / Ball and Drake $\underline{\sqrt{19647}}$, p. 70.

^{25/} Landau $\sqrt{19667}$.

problems of model misspecification which have plagued so much of the recent research on the determinants of aggregate savings over time. Our results show quite clearly for Asia that income distribution plays the powerful role normally attributed to it but that the growth rate of per capita income is likely to explain most of the remaining variation in savings ratios in the household sector. Furthermore, the underlying assumptions of these models seem well-suited to the underdeveloped world. In particular, it seems to the present writer that the basic assumptions of the wealth-consumption model, shortsightedness and a dominance of a precautionary motive for asset holding, are far more applicable to underdeveloped Asia than to the affluent Western nations for which the model was originally formulated.

REFERENCES

- E. Malinvaud /19667, Statistical Methods of Econometrics, (North-Holland Publishing Co., Amsterdam).
- R. Ball and P. Drake /19647, "The Relationship Between Aggregate Consumption and Wealth," International Economic Review, Vol. 5, No. 1
 (January 1964), 63-81.
- R. Nelson /1967/, "Aggregate Production Functions and Economic Growth Policy," in M. Brown (ed.),

 The Theory and Empirical Analysis of Production,
 (NBER, Columbia University Press, New York),
 479-496.
- R. Solow /1967/, "Some Recent Developments in the Theory of Production," ibid., 25-50.
- P. Pavlopoulos /1966/, A Statistical Model for the Greek Economy, 1949-1959, (North-Holland Publishing Co., Amsterdam), 36-41 and 82-89.
- J. Williamson /1967, "Determinants of Personal Saving in Asia: Long-Run and Short-Run Effects,"

 IEDR, <u>Discussion Paper No. 67-11</u> (University of the Philippines), September 15, 1967.

 Forthcoming in the <u>Economic Record</u>.
- C. Christ /19667, Econometric Models and Methods, (Wiley, New York).
- J. Duesenberry 19527, Income, Saving and the Theory of Consumer Behavior (Harvard University Press: Cambridge, Massachusetts).
- L. M. Koyck /1954/, <u>Distributed Lags and Investment</u>

 <u>Analysis</u> (North-Holland Publishing Company,

 Amsterdam).

- M. Nerlove /1958/, "Distributed Lags and Demand Analysis for Agricultural and Other Commodities,"

 Agricultural Handbook No. 141, U.S. Department of Agriculture.
- M. Evans /1967/, "The Importance of Wealth in the Consumption Function," <u>Journal of Political Economy</u>, Vol. 75, No. 4 (August 1967), 335-351.
- L. Landau /1966/, "Determinants of Savings in Latin America," Memorandum No. 13, Project for Quantitative Research in Economic Development, Center for International Affairs, June 1966.
- A. Spiro /1962/, "Wealth and the Consumption Function,"

 Journal of Political Economy, Vol. LXX (August
 1962), 339-354.
- R. Stone and D. Rowe /1962/, "A Post-War Expenditure Function," The Manchester School, Vol. XXX, No. 2 (May 1962), 187-201.
- H. Lydall /1963/, "Saving and Wealth," Australian Economic Papers, Vol. 2, No. 2, (December 1963), pp. 228-250.
- C. Wright /1967/, "Some Evidence on the Interest Elasticity of Consumption," American Economic Review, Vol. LVII, No. 3 (September 1967), pp. 850-855.
- G. Ackley /19517, "The Wealth-Saving Relationship,"

 Journal of Political Economy, Vol. LIX (April 1951), pp. 154-160.
- H. Houthakker /1961/, "An International Comparison of Personal Savings," Bulletin of the International Statistical Institute, Vol. XXXVIII, (1961), pp. 55-69.
- /19627, "On Some Determinants of Saving in Developed and Underdeveloped Countries," Memorandum No. 20 (Stanford Research Center in Economic Growth, mimeo., July 1962).

Dalman, Q. C.

- I. Friend and F. Taubman /1966/, "The Aggregate Propensity to Save: Some Concepts and Their Application to International Data," Review of Economics and Statistics, Vol. XLVIII, No. 2 (May 1966), pp. 113-123.
- F. Hahn and R. Matthews /1964/, "The Theory of Economic Growth: A Survey," Economic Journal, Vol. LXXIV, No. 296 (December 1964), pp. 780-902.
- A. Zellner, D. Huang and L. Cheu /19657, "Further Analysis of the Short-Run Consumption Function with Emphasis on the Role of Liquid Assets,"

 Econometrica, Vol. 33, No. 3 (July 1965), pp. 571-581.
- R. Ferber /1962/, "Research on Household Behavior,"

 American Economic Review, Vol. 52 (March 1962),
 pp. 19-63.